Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Physiol Rev ; 95(4): 1359-81, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26378079

RESUMEN

Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of this knowledge for orthopedic applications and bone tissue engineering.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/metabolismo , Huesos/fisiología , Histona Desacetilasas/metabolismo , Animales , Humanos , Esqueleto
2.
Connect Tissue Res ; 58(1): 27-36, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27662443

RESUMEN

Histone deacetylase (Hdac3) inhibitors are emerging therapies for many diseases including cancers and neurological disorders; however, these drugs are teratogens to the developing skeleton. Hdac3 is essential for proper endochondral ossification as its deletion in chondrocytes increases cytokine signaling and the expression of matrix remodeling enzymes. Here we explored the mechanism by which Hdac3 controls matrix metalloproteinase (Mmp)-13 expression in chondrocytes. In Hdac3-depleted chondrocytes, extracellular signal-regulated kinase (Erk)1/2 as well as its downstream substrate, Runx2, were hyperphosphorylated as a result of decreased expression and activity of the Erk1/2 specific phosphatase, Dusp6. Erk1/2 kinase inhibitors and Dusp6 adenoviruses reduced Mmp13 expression and partially rescued matrix production in Hdac3-deficient chondrocytes. Postnatal chondrocyte-specific deletion of Hdac3 with an inducible Col2a1-Cre caused premature production of pErk1/2 and Mmp13 in the growth plate. Thus, Hdac3 controls the temporal and spatial expression of tissue-remodeling genes in chondrocytes to ensure proper endochondral ossification during development.


Asunto(s)
Condrocitos/metabolismo , Histona Desacetilasas/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Animales , Células Cultivadas , Condrocitos/citología , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Histona Desacetilasas/genética , Metaloproteinasa 13 de la Matriz/genética , Ratones , Proteína Quinasa 3 Activada por Mitógenos/genética , Osteogénesis/fisiología , Fosforilación/fisiología
3.
J Biol Chem ; 290(1): 118-26, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25389289

RESUMEN

Histone deacetylases (Hdacs) regulate endochondral ossification by suppressing gene transcription and modulating cellular responses to growth factors and cytokines. We previously showed that Hdac7 suppresses Runx2 activity and osteoblast differentiation. In this study, we examined the role of Hdac7 in postnatal chondrocytes. Hdac7 was highly expressed in proliferating cells within the growth plate. Postnatal tissue-specific ablation of Hdac7 with a tamoxifen-inducible collagen type 2a1-driven Cre recombinase increased proliferation and ß-catenin levels in growth plate chondrocytes and expanded the proliferative zone. Similar results were obtained in primary chondrocyte cultures where Hdac7 was deleted with adenoviral-Cre. Hdac7 bound ß-catenin in proliferating chondrocytes, but stimulation of chondrocyte maturation promoted the translocation of Hdac7 to the cytoplasm where it was degraded by the proteasome. As a result, ß-catenin levels and transcription activity increased in the nucleus. These data demonstrate that Hdac7 suppresses proliferation and ß-catenin activity in chondrocytes. Reducing Hdac7 levels in early chondrocytes may promote the expansion and regeneration of cartilage tissues.


Asunto(s)
Cartílago/metabolismo , Condrocitos/metabolismo , Condrogénesis/genética , Placa de Crecimiento/metabolismo , Histona Desacetilasas/genética , beta Catenina/genética , Adenoviridae/genética , Animales , Animales Recién Nacidos , Cartílago/citología , Cartílago/crecimiento & desarrollo , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Condrocitos/citología , Citoplasma/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Placa de Crecimiento/citología , Placa de Crecimiento/crecimiento & desarrollo , Histona Desacetilasas/deficiencia , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteolisis , Transducción de Señal , beta Catenina/agonistas , beta Catenina/metabolismo
4.
J Biol Chem ; 290(26): 16272-80, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25953896

RESUMEN

Endochondral ossification orchestrates formation of the vertebrate skeleton and is often induced during disease and repair processes of the musculoskeletal system. Here we show that the protein phosphatase Phlpp1 regulates endochondral ossification. Phlpp1 null mice exhibit decreased bone mass and notable changes in the growth plate, including increased BrdU incorporation and matrix production. Phosphorylation of known Phlpp1 substrates, Akt2, PKC, and p70 S6 kinase, were enhanced in ex vivo cultured Phlpp1(-/-) chondrocytes. Furthermore, Phlpp1 deficiency diminished FoxO1 levels leading to increased expression of Fgf18, Mek/Erk activity, and chondrocyte metabolic activity. Phlpp inhibitors also increased matrix content, Fgf18 production and Erk1/2 phosphorylation. Chemical inhibition of Fgfr-signaling abrogated elevated Erk1/2 phosphorylation and metabolic activity in Phlpp1-null cultures. These results demonstrate that Phlpp1 controls chondrogenesis via multiple mechanisms and that Phlpp1 inhibition could be a strategy to promote cartilage regeneration and repair.


Asunto(s)
Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Eliminación de Gen , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Animales , Cartílago/citología , Cartílago/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
5.
Curr Rheumatol Rep ; 18(8): 52, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27402109

RESUMEN

The involvement of the epigenome in complex diseases is becoming increasingly clear and more feasible to study due to new genomic and computational technologies. Moreover, therapies altering the activities of proteins that modify and interpret the epigenome are available to treat cancers and neurological disorders. Many additional uses have been proposed for these drugs based on promising preclinical results, including in arthritis models. Understanding the effects of epigenomic drugs on the skeleton is of interest because of its importance in maintaining overall health and fitness. In this review, we summarize ongoing advancements in how one class of epigenetic modifiers, histone deacetylases (Hdacs), controls normal cartilage development and homeostasis, as well as recent work aimed at understanding the alterations in the expression and activities of these enzymes in osteoarthritis (OA). We also review recent studies utilizing Hdac inhibitors and discuss the potential therapeutic benefits and limitations of these drugs for preventing cartilage destruction in OA.


Asunto(s)
Cartílago Articular/metabolismo , Histona Desacetilasas/metabolismo , Homeostasis/fisiología , Osteoartritis/metabolismo , Condrocitos/metabolismo , Epigénesis Genética , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Osteoartritis/tratamiento farmacológico
6.
J Biol Chem ; 288(14): 9572-9582, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23408427

RESUMEN

HDACs epigenetically regulate cellular processes by modifying chromatin and influencing gene expression. We previously reported that conditional deletion of Hdac3 in osteo-chondroprogenitor cells with Osx1-Cre caused severe osteopenia due to abnormal maturation of osteoblasts. The mice were also smaller. To address the abnormal longitudinal growth in these animals, the role of Hdac3 in chondrocyte differentiation was evaluated. We found that Hdac3 is highly expressed in resting and prehypertrophic growth plate chondrocytes, as well as in articular chondrocytes. Hdac3-deficient chondrocytes entered hypertrophy sooner and were smaller than normal chondrocytes. Extracellular matrix production was suppressed as glycosaminoglycan secretion and production of aggrecan, osteopontin, and matrix extracellular phosphoglycoprotein were reduced in Hdac3-deficient chondrocytes. These phenotypes led to the hypothesis that the Akt/mTOR pathway was repressed in these Hdac3-deficient chondrocytes because Akt promotes hypertrophy and matrix production in many tissues. The phosphorylation and activation of Akt, its substrate mTOR, and the mTOR substrate, p70 S6 kinase, were indeed reduced in Hdac3-deficient primary chondrocytes as well as in chondrocytes exposed to HDAC inhibitors. Expression of constitutively active Akt restored phosphorylation of mTOR and p70 S6K and matrix gene expression levels. Reduced phosphorylation of Akt and its substrates in Hdac3-deficient or HDAC inhibitors treated chondrocytes correlated with increased expression of the phosphatase Phlpp1. Hdac3 associated with a Phlpp1 promoter region containing Smad binding elements and was released after TGFß was added to the culture. These data demonstrate that Hdac3 controls chondrocyte hypertrophy and matrix content by repressing Phlpp1 expression and facilitating Akt activity.


Asunto(s)
Cartílago/citología , Condrocitos/enzimología , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/química , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Condrocitos/citología , Epigénesis Genética , Matriz Extracelular/metabolismo , Inhibidores de Histona Desacetilasas/química , Hipertrofia , Leucina/química , Ratones , Osteocitos/citología , Regeneración , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Transcripción Sp7 , Células Madre/citología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Biochem Biophys Res Commun ; 448(1): 83-8, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24780398

RESUMEN

We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in ß-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter. Blockade of Wnt signaling reduces prostacyclin production in osteocytes. Increased prostacyclin production by osteocytes from sclerostin deficient mice could potentially contribute to the increased bone formation seen in this condition.


Asunto(s)
Epoprostenol/biosíntesis , Glicoproteínas/deficiencia , Osteocitos/metabolismo , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Huesos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Factor de Unión 1 al Potenciador Linfoide/biosíntesis , Ratones , Ratones Noqueados , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
8.
Biochem Biophys Res Commun ; 441(4): 886-90, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24211207

RESUMEN

We investigated the influence of the osteocyte protein, sclerostin, on fracture healing by examining the dynamics and mechanisms of repair of single-cortex, stabilized femoral defects in sclerostin knockout (Sost(-/-); KO) and sclerostin wild-type (Sost(+/+); WT) mice. Fourteen days following generation of bone defects, Sost KO mice had significantly more bone in the healing defect than WT mice. The increase in regenerating bone was due to an increase in the thickness of trabecularized spicules, osteoblast numbers and surfaces within the defect. Enhanced healing of bone defects in Sost KO mice was associated with significantly more activated ß-catenin expression than observed in WT mice. The findings were similar to those observed in Axin2(-/-) mice, in which ß-catenin signaling is known to be enhanced to facilitate bone regeneration. Taken together, these data indicate that enhanced ß-catenin signaling is present in Sost(-/-) mice that demonstrate accelerated healing of bone defects, suggesting that modulation of ß-catenin signaling in bone could be used to promote fracture repair.


Asunto(s)
Curación de Fractura/genética , Glicoproteínas/genética , Osteogénesis/genética , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados , Osteoblastos/citología , Transducción de Señal , beta Catenina/biosíntesis
9.
J Bone Miner Res ; 31(1): 116-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26211746

RESUMEN

Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research.


Asunto(s)
Adiposidad , Envejecimiento , Células de la Médula Ósea/metabolismo , Glucocorticoides/metabolismo , Histona Desacetilasas/deficiencia , Metabolismo de los Lípidos , Células Madre/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Células de la Médula Ósea/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Glucocorticoides/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Transgénicos , PPAR gamma/genética , PPAR gamma/metabolismo , Perilipina-1 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Células Madre/patología , Células del Estroma/metabolismo , Células del Estroma/patología
10.
Sci Signal ; 9(440): ra79, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27507649

RESUMEN

Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development.


Asunto(s)
Comunicación Autocrina/fisiología , Matriz Extracelular/metabolismo , Histona Desacetilasas/metabolismo , Interleucina-6/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Animales , Comunicación Autocrina/efectos de los fármacos , Condrocitos/metabolismo , Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Histona Desacetilasas/genética , Interleucina-6/genética , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/metabolismo , Ratones , Ratones Noqueados , Nitrilos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas , Transducción de Señal/efectos de los fármacos
11.
Nat Cell Biol ; 17(9): 1145-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26302406

RESUMEN

E-cadherin and p120 catenin (p120) are essential for epithelial homeostasis, but can also exert pro-tumorigenic activities. Here, we resolve this apparent paradox by identifying two spatially and functionally distinct junctional complexes in non-transformed polarized epithelial cells: one growth suppressing at the apical zonula adherens (ZA), defined by the p120 partner PLEKHA7 and a non-nuclear subset of the core microprocessor components DROSHA and DGCR8, and one growth promoting at basolateral areas of cell-cell contact containing tyrosine-phosphorylated p120 and active Src. Recruitment of DROSHA and DGCR8 to the ZA is PLEKHA7 dependent. The PLEKHA7-microprocessor complex co-precipitates with primary microRNAs (pri-miRNAs) and possesses pri-miRNA processing activity. PLEKHA7 regulates the levels of select miRNAs, in particular processing of miR-30b, to suppress expression of cell transforming markers promoted by the basolateral complex, including SNAI1, MYC and CCND1. Our work identifies a mechanism through which adhesion complexes regulate cellular behaviour and reveals their surprising association with the microprocessor.


Asunto(s)
Cadherinas/fisiología , Cateninas/metabolismo , MicroARNs/metabolismo , Familia-src Quinasas/metabolismo , Uniones Adherentes/metabolismo , Animales , Antígenos CD , Células CACO-2 , Proteínas Portadoras/metabolismo , Perros , Humanos , Células de Riñón Canino Madin Darby , MicroARNs/genética , Transporte de Proteínas , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Catenina delta
12.
Bone ; 66: 277-86, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973690

RESUMEN

Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2(+/-) mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2(+/-) mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in Axin2(-/-):Runx2(+/-) mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2(+/-) mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2(-/-):Runx2(+/-) calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2(+/-) and double mutant Axin2(-/-):Runx2(+/-) mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2(+/-) mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2(-/-) mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation.


Asunto(s)
Proteína Axina/deficiencia , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteogénesis , Cráneo/patología , Cicatrización de Heridas , Animales , Proteína Axina/metabolismo , Cartílago/patología , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis/genética , Displasia Cleidocraneal/diagnóstico por imagen , Displasia Cleidocraneal/genética , Displasia Cleidocraneal/patología , Fontanelas Craneales/diagnóstico por imagen , Fontanelas Craneales/patología , Progresión de la Enfermedad , Curación de Fractura , Regulación del Desarrollo de la Expresión Génica , Haploinsuficiencia , Ratones , Ratones Mutantes , Modelos Biológicos , Neovascularización Fisiológica/genética , Tamaño de los Órganos , Osteogénesis/genética , Fenotipo , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA