Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biomater Adv ; 153: 213534, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37356284

RESUMEN

The intestine is a complex tissue with a characteristic three-dimensional (3D) crypt-villus architecture, which plays a key role in the intestinal function. This function is also regulated by the intestinal stroma that actively supports the intestinal epithelium, maintaining the homeostasis of the tissue. Efforts to account for the 3D complex structure of the intestinal tissue have been focused mainly in mimicking the epithelial barrier, while solutions to include the stromal compartment are scarce and unpractical to be used in routine experiments. Here we demonstrate that by employing an optimized bioink formulation and the suitable printing parameters it is possible to produce fibroblast-laden crypt-villus structures by means of digital light projection stereolithography (DLP-SLA). This process provides excellent cell viability, accurate spatial resolution, and high printing throughput, resulting in a robust biofabrication approach that yields functional gut mucosa tissues compatible with conventional testing techniques.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Estereolitografía , Duodeno , Mucosa Intestinal
2.
Biomater Adv ; 154: 213636, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778292

RESUMEN

Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 µm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.


Asunto(s)
Señales (Psicología) , Células Endoteliales , Humanos , Fibroblastos , Neovascularización Fisiológica , Endotelio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA