Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NPJ Vaccines ; 7(1): 128, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307453

RESUMEN

Despite the success of currently authorized vaccines for the reduction of severe COVID-19 disease risk, rapidly emerging viral variants continue to drive pandemic waves of infection, resulting in numerous global public health challenges. Progress will depend on future advances in prophylactic vaccine activity, including advancement of candidates capable of generating more potent induction of cross-reactive T cells and durable cross-reactive antibody responses. Here we evaluated an Amphiphile (AMP) adjuvant, AMP-CpG, admixed with SARS-CoV-2 Spike receptor binding domain (RBD) immunogen, as a lymph node-targeted protein subunit vaccine (ELI-005) in mice and non-human primates (NHPs). AMP-mediated targeting of CpG DNA to draining lymph nodes resulted in comprehensive local immune activation characterized by extensive transcriptional reprogramming, inflammatory proteomic milieu, and activation of innate immune cells as key orchestrators of antigen-directed adaptive immunity. Prime-boost immunization with AMP-CpG in mice induced potent and durable T cell responses in multiple anatomical sites critical for prophylactic efficacy and prevention of severe disease. Long-lived memory responses were rapidly expanded upon re-exposure to antigen. In parallel, RBD-specific antibodies were long-lived, and exhibited cross-reactive recognition of variant RBD. AMP-CpG-adjuvanted prime-boost immunization in NHPs was safe and well tolerated, while promoting multi-cytokine-producing circulating T cell responses cross-reactive across variants of concern (VOC). Expansion of RBD-specific germinal center (GC) B cells in lymph nodes correlated to rapid seroconversion with variant-specific neutralizing antibody responses exceeding those measured in convalescent human plasma. These results demonstrate the promise of lymph-node adjuvant-targeting to coordinate innate immunity and generate robust adaptive responses critical for vaccine efficacy.

2.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36125890

RESUMEN

TGF-ß plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-ß-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-ß and a TGF-ß type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-ß reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-ß signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Radioisótopos de Cobre/farmacología , Radioisótopos de Cobre/uso terapéutico , Antirretrovirales/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Macaca mulatta , Replicación Viral , Factor de Crecimiento Transformador beta , Inmunidad
3.
Sci Transl Med ; 14(654): eabn1413, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35857825

RESUMEN

To combat the HIV epidemic and emerging threats such as SARS-CoV-2, immunization strategies are needed that elicit protection at mucosal portals of pathogen entry. Immunization directly through airway surfaces is effective in driving mucosal immunity, but poor vaccine uptake across the mucus and epithelial lining is a limitation. The major blood protein albumin is constitutively transcytosed bidirectionally across the airway epithelium through interactions with neonatal Fc receptors (FcRn). Exploiting this biology, here, we demonstrate a strategy of "albumin hitchhiking" to promote mucosal immunity using an intranasal vaccine consisting of protein immunogens modified with an amphiphilic albumin-binding polymer-lipid tail, forming amph-proteins. Amph-proteins persisted in the nasal mucosa of mice and nonhuman primates and exhibited increased uptake into the tissue in an FcRn-dependent manner, leading to enhanced germinal center responses in nasal-associated lymphoid tissue. Intranasal immunization with amph-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice compared to unmodified protein. Amph-RBD immunization induced high titers of SARS-CoV-2-neutralizing antibodies in serum, nasal washes, and bronchoalveolar lavage. Furthermore, intranasal amph-protein immunization in rhesus macaques elicited 10-fold higher antigen-specific IgG and IgA responses in the serum and nasal mucosa compared to unmodified protein, supporting the translational potential of this approach. These results suggest that using amph-protein vaccines to deliver antigen across mucosal epithelia is a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases.


Asunto(s)
COVID-19 , Infecciones por VIH , Administración Intranasal , Albúminas , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Infecciones por VIH/prevención & control , Inmunidad Mucosa , Inmunoglobulina A , Inmunoglobulina G , Lípidos , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2 , Vacunación
5.
Fam Community Health ; 27(2): 143-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15596981

RESUMEN

The Friendship Club is a program designed and implemented by occupational therapy students and faculty to help teach children, ages 8-15, activities related to friendship and skills necessary to maintain friends. The program, a joint effort between university partners, a local parent support group, and a local Rotary Club that provided funding, was deemed successful by participants, parents, and leaders. This article reviews the interdisciplinary development of the club, the program, and its outcomes. Recommendations for the group's continuation are supported by feedback obtained from participants and their parents.


Asunto(s)
Conducta del Adolescente/psicología , Síndrome de Asperger/rehabilitación , Conducta Infantil/psicología , Amigos/psicología , Relaciones Interpersonales , Grupos de Autoayuda , Facilitación Social , Adolescente , Síndrome de Asperger/psicología , Niño , Conducta Cooperativa , Humanos , Entrevistas como Asunto , Terapia Ocupacional/métodos , Evaluación de Programas y Proyectos de Salud , Instituciones Académicas , Sudeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA