Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(4): 780-91, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341448

RESUMEN

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Asunto(s)
Neoplasias Faciales/veterinaria , Inestabilidad Genómica , Marsupiales/genética , Mutación , Animales , Evolución Clonal , Especies en Peligro de Extinción , Neoplasias Faciales/epidemiología , Neoplasias Faciales/genética , Neoplasias Faciales/patología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Datos de Secuencia Molecular , Tasmania/epidemiología
2.
Cell ; 144(1): 27-40, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215367

RESUMEN

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Asunto(s)
Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Pintura Cromosómica , Femenino , Reordenamiento Génico , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Persona de Mediana Edad
3.
Am J Hum Genet ; 92(2): 301-6, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23352258

RESUMEN

A single Mendelian trait has been mapped to the human Y chromosome: Y-linked hearing impairment. The molecular basis of this disorder is unknown. Here, we report the detailed characterization of the DFNY1 Y chromosome and its comparison with a closely related Y chromosome from an unaffected branch of the family. The DFNY1 chromosome carries a complex rearrangement, including duplication of several noncontiguous segments of the Y chromosome and insertion of ∼160 kb of DNA from chromosome 1, in the pericentric region of Yp. This segment of chromosome 1 is derived entirely from within a known hearing impairment locus, DFNA49. We suggest that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.


Asunto(s)
Cromosomas Humanos Y/genética , Genes Ligados a Y/genética , Pérdida Auditiva/genética , Femenino , Reordenamiento Génico/genética , Humanos , Masculino , Linaje
4.
Lancet ; 385(9975): 1305-14, 2015 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-25529582

RESUMEN

BACKGROUND: Human genome sequencing has transformed our understanding of genomic variation and its relevance to health and disease, and is now starting to enter clinical practice for the diagnosis of rare diseases. The question of whether and how some categories of genomic findings should be shared with individual research participants is currently a topic of international debate, and development of robust analytical workflows to identify and communicate clinically relevant variants is paramount. METHODS: The Deciphering Developmental Disorders (DDD) study has developed a UK-wide patient recruitment network involving over 180 clinicians across all 24 regional genetics services, and has performed genome-wide microarray and whole exome sequencing on children with undiagnosed developmental disorders and their parents. After data analysis, pertinent genomic variants were returned to individual research participants via their local clinical genetics team. FINDINGS: Around 80,000 genomic variants were identified from exome sequencing and microarray analysis in each individual, of which on average 400 were rare and predicted to be protein altering. By focusing only on de novo and segregating variants in known developmental disorder genes, we achieved a diagnostic yield of 27% among 1133 previously investigated yet undiagnosed children with developmental disorders, whilst minimising incidental findings. In families with developmentally normal parents, whole exome sequencing of the child and both parents resulted in a 10-fold reduction in the number of potential causal variants that needed clinical evaluation compared to sequencing only the child. Most diagnostic variants identified in known genes were novel and not present in current databases of known disease variation. INTERPRETATION: Implementation of a robust translational genomics workflow is achievable within a large-scale rare disease research study to allow feedback of potentially diagnostic findings to clinicians and research participants. Systematic recording of relevant clinical data, curation of a gene-phenotype knowledge base, and development of clinical decision support software are needed in addition to automated exclusion of almost all variants, which is crucial for scalable prioritisation and review of possible diagnostic variants. However, the resource requirements of development and maintenance of a clinical reporting system within a research setting are substantial. FUNDING: Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust and the UK Department of Health.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Genoma Humano/genética , Adolescente , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Heterocigoto , Humanos , Hallazgos Incidentales , Lactante , Recién Nacido , Difusión de la Información , Masculino , Fenotipo , Manejo de Especímenes
5.
Nature ; 464(7289): 704-12, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19812545

RESUMEN

Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Genoma Humano/genética , Mutagénesis/genética , Duplicación de Gen , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Grupos Raciales/genética , Reproducibilidad de los Resultados
6.
Nat Genet ; 39(7 Suppl): S16-21, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17597776

RESUMEN

The association of DNA copy-number variation (CNV) with specific gene function and human disease has been long known, but the wide scope and prevalence of this form of variation has only recently been fully appreciated. The latest studies using microarray technology have demonstrated that as much as 12% of the human genome and thousands of genes are variable in copy number, and this diversity is likely to be responsible for a significant proportion of normal phenotypic variation. Current challenges involve developing methods not only for detecting and cataloging CNVs in human populations at increasingly higher resolution but also for determining the association of CNVs with biological function, recent human evolution, and common and complex human disease.


Asunto(s)
Dosificación de Gen , Variación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Cromosomas Artificiales Bacterianos/genética , Cromosomas Humanos Par 18/genética , Clonación Molecular , ADN Complementario/genética , Genoma Humano , Genotipo , Humanos , Hibridación de Ácido Nucleico , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
7.
Nat Genet ; 39(7 Suppl): S7-15, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17597783

RESUMEN

There has been an explosion of data describing newly recognized structural variants in the human genome. In the flurry of reporting, there has been no standard approach to collecting the data, assessing its quality or describing identified features. This risks becoming a rampant problem, in particular with respect to surveys of copy number variation and their application to disease studies. Here, we consider the challenges in characterizing and documenting genomic structural variants. From this, we derive recommendations for standards to be adopted, with the aim of ensuring the accurate presentation of this form of genetic variation to facilitate ongoing research.


Asunto(s)
Variación Genética , Genoma Humano , Bases de Datos Genéticas/normas , Dosificación de Gen , Genómica/normas , Genómica/tendencias , Humanos , Control de Calidad , Terminología como Asunto
8.
Genome Res ; 22(2): 346-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21994251

RESUMEN

Cancer genomes are complex, carrying thousands of somatic mutations including base substitutions, insertions and deletions, rearrangements, and copy number changes that have been acquired over decades. Recently, technologies have been introduced that allow generation of high-resolution, comprehensive catalogs of somatic alterations in cancer genomes. However, analyses of these data sets generally do not indicate the order in which mutations have occurred, or the resulting karyotype. Here, we introduce a mathematical framework that begins to address this problem. By using samples with accurate data sets, we can reconstruct relatively complex temporal sequences of rearrangements and provide an assembly of genomic segments into digital karyotypes. For cancer genes mutated in rearranged regions, this information can provide a chronological examination of the selective events that have taken place.


Asunto(s)
Genoma Humano , Modelos Genéticos , Neoplasias/genética , Filogenia , Translocación Genética , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Evolución Molecular , Humanos , Mutación
9.
Am J Med Genet A ; 167A(12): 3038-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26420380

RESUMEN

The ability to identify the clinical nature of the recurrent duplication of chromosome 17q12 has been limited by its rarity and the diverse range of phenotypes associated with this genomic change. In order to further define the clinical features of affected patients, detailed clinical information was collected in the largest series to date (30 patients and 2 of their siblings) through a multi-institutional collaborative effort. The majority of patients presented with developmental delays varying from mild to severe. Though dysmorphic features were commonly reported, patients do not have consistent and recognizable features. Cardiac, ophthalmologic, growth, behavioral, and other abnormalities were each present in a subset of patients. The newly associated features potentially resulting from 17q12 duplication include height and weight above the 95th percentile, cataracts, microphthalmia, coloboma, astigmatism, tracheomalacia, cutaneous mosaicism, pectus excavatum, scoliosis, hypermobility, hypospadias, diverticulum of Kommerell, pyloric stenosis, and pseudohypoparathryoidism. The majority of duplications were inherited with some carrier parents reporting learning disabilities or microcephaly. We identified additional, potentially contributory copy number changes in a subset of patients, including one patient each with 16p11.2 deletion and 15q13.3 deletion. Our data further define and expand the clinical spectrum associated with duplications of 17q12 and provide support for the role of genomic modifiers contributing to phenotypic variability.


Asunto(s)
Anomalías Múltiples/genética , Duplicación Cromosómica , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Cara/anomalías , Femenino , Humanos , Lactante , Masculino , Microcefalia/genética , Fenotipo , Adulto Joven
11.
Nat Genet ; 38(1): 75-81, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16327808

RESUMEN

Recent work has shown that copy number polymorphism is an important class of genetic variation in human genomes. Here we report a new method that uses SNP genotype data from parent-offspring trios to identify polymorphic deletions. We applied this method to data from the International HapMap Project to produce the first high-resolution population surveys of deletion polymorphism. Approximately 100 of these deletions have been experimentally validated using comparative genome hybridization on tiling-resolution oligonucleotide microarrays. Our analysis identifies a total of 586 distinct regions that harbor deletion polymorphisms in one or more of the families. Notably, we estimate that typical individuals are hemizygous for roughly 30-50 deletions larger than 5 kb, totaling around 550-750 kb of euchromatic sequence across their genomes. The detected deletions span a total of 267 known and predicted genes. Overall, however, the deleted regions are relatively gene-poor, consistent with the action of purifying selection against deletions. Deletion polymorphisms may well have an important role in the genetics of complex traits; however, they are not directly observed in most current gene mapping studies. Our new method will permit the identification of deletion polymorphisms in high-density SNP surveys of trio or other family data.


Asunto(s)
Genoma Humano , Polimorfismo Genético , Eliminación de Secuencia , Bases de Datos Genéticas , Humanos , Hibridación in Situ/métodos , Cooperación Internacional , Análisis por Micromatrices/métodos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
12.
Nat Genet ; 38(9): 1032-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906163

RESUMEN

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 17 , Discapacidades del Desarrollo/genética , Discapacidades para el Aprendizaje/genética , Proteínas tau/genética , Adolescente , Adulto , Preescolar , Inversión Cromosómica , Femenino , Marcadores Genéticos , Haplotipos , Heterocigoto , Humanos , Hibridación Fluorescente in Situ , Masculino , Hibridación de Ácido Nucleico , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos
13.
Hum Mol Genet ; 21(R1): R37-44, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962312

RESUMEN

Patients with developmental disorders often harbour sub-microscopic deletions or duplications that lead to a disruption of normal gene expression or perturbation in the copy number of dosage-sensitive genes. Clinical interpretation for such patients in isolation is hindered by the rarity and novelty of such disorders. The DECIPHER project (https://decipher.sanger.ac.uk) was established in 2004 as an accessible online repository of genomic and associated phenotypic data with the primary goal of aiding the clinical interpretation of rare copy-number variants (CNVs). DECIPHER integrates information from a variety of bioinformatics resources and uses visualization tools to identify potential disease genes within a CNV. A two-tier access system permits clinicians and clinical scientists to maintain confidential linked anonymous records of phenotypes and CNVs for their patients that, with informed consent, can subsequently be shared with the wider clinical genetics and research communities. Advances in next-generation sequencing technologies are making it practical and affordable to sequence the whole exome/genome of patients who display features suggestive of a genetic disorder. This approach enables the identification of smaller intragenic mutations including single-nucleotide variants that are not accessible even with high-resolution genomic array analysis. This article briefly summarizes the current status and achievements of the DECIPHER project and looks ahead to the opportunities and challenges of jointly analysing structural and sequence variation in the human genome.


Asunto(s)
Variaciones en el Número de Copia de ADN , Bases de Datos de Ácidos Nucleicos , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Congénitas/genética , Internet , Biología Computacional , Predisposición Genética a la Enfermedad , Variación Genética , Genoma Humano , Humanos , Difusión de la Información , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Br Dent J ; 236(3): 162-168, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332075

RESUMEN

Nowadays, the link between oral health and general health is clearly understood and supported by many global bodies, including the World Health Organisation. Yet, oral diseases remain prevalent worldwide, necessitating a practical approach. This opinion paper seeks to clarify the role of teledentistry as an adjunct for improving oral health when access to oral care services is one of the major concerns.While prevention is the best option, many people lack regular oral care access, missing vital maintenance for mouth and body health. Limited evidence-based education further hinders effective oral hygiene routines. This holds true for remote/rural populations, low socioeconomic groups and individuals with physical/mental disabilities which could make visiting a dental practice more difficult.We examined recent teledentistry publications, highlighting outcomes and suggesting evidence-backed oral health guidance via tailored teledentistry models. Two virtual roundtables were conducted with a global working group experienced in teledentistry and dental access barriers. This panel was made up of representatives from the UK, Belgium, Vietnam, Indonesia, Bangladesh, Ghana and Tunisia.We conclude that teledentistry effectively aids dental referrals, early disease detection, treatment planning, compliance and viability, particularly in regions with limited dental access. The advantage of teledentistry lies in expanding the reach of care. Telehealth and teledentistry are value-driven, yet larger, standardised research is needed to fully harness the potential of teledentistry in bridging underserved populations with oral care experts, ultimately fostering optimal oral health. Education on the capabilities and benefits of teledentistry should become part of the curriculum of future dental professionals and broadly leveraged on continuing education platforms.


Asunto(s)
Enfermedades de la Boca , Telemedicina , Humanos , Salud Bucal , Área sin Atención Médica , Enfermedades de la Boca/diagnóstico , Enfermedades de la Boca/prevención & control , Higiene Bucal
15.
Hum Mol Genet ; 20(10): 1925-36, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21349920

RESUMEN

The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.


Asunto(s)
Cromosomas Humanos X/genética , Replicación del ADN/genética , Isocromosomas/genética , Secuencia de Bases , Rotura Cromosómica , Hibridación Genómica Comparativa , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Polimorfismo Genético , Recombinación Genética , Alineación de Secuencia , Secuencias Repetidas en Tándem/genética
16.
Am J Hum Genet ; 87(2): 189-98, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20673863

RESUMEN

By using a combination of array comparative genomic hybridization and a candidate gene approach, we identified nuclear factor I/X (NFIX) deletions or nonsense mutation in three sporadic cases of a Sotos-like overgrowth syndrome with advanced bone age, macrocephaly, developmental delay, scoliosis, and unusual facies. Unlike the aforementioned human syndrome, Nfix-deficient mice are unable to gain weight and die in the first 3 postnatal weeks, while they also present with a spinal deformation and decreased bone mineralization. These features prompted us to consider NFIX as a candidate gene for Marshall-Smith syndrome (MSS), a severe malformation syndrome characterized by failure to thrive, respiratory insufficiency, accelerated osseous maturation, kyphoscoliosis, osteopenia, and unusual facies. Distinct frameshift and splice NFIX mutations that escaped nonsense-mediated mRNA decay (NMD) were identified in nine MSS subjects. NFIX belongs to the Nuclear factor one (NFI) family of transcription factors, but its specific function is presently unknown. We demonstrate that NFIX is normally expressed prenatally during human brain development and skeletogenesis. These findings demonstrate that allelic NFIX mutations trigger distinct phenotypes, depending specifically on their impact on NMD.


Asunto(s)
Anomalías Múltiples/genética , Alelos , Codón sin Sentido/genética , Mutación/genética , Factores de Transcripción NFI/genética , Estabilidad del ARN/genética , Adolescente , Adulto , Secuencia de Bases , Niño , Cromosomas Humanos Par 19/genética , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Femenino , Regulación de la Expresión Génica , Pruebas Genéticas , Humanos , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Factores de Transcripción NFI/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndrome
17.
Am J Hum Genet ; 86(5): 749-64, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20466091

RESUMEN

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


Asunto(s)
Trastornos de los Cromosomas/genética , Anomalías Congénitas/genética , Discapacidades del Desarrollo/genética , Niño , Bandeo Cromosómico , Humanos , Cariotipificación
18.
Nature ; 447(7146): 799-816, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17571346

RESUMEN

We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.


Asunto(s)
Genoma Humano/genética , Genómica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética/genética , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Secuencia Conservada/genética , Replicación del ADN , Evolución Molecular , Exones/genética , Variación Genética/genética , Heterocigoto , Histonas/metabolismo , Humanos , Proyectos Piloto , Unión Proteica , ARN Mensajero/genética , ARN no Traducido/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
19.
Nat Genet ; 36(9): 931-2, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15340426

RESUMEN

Two papers report that large-scale copy-number variations, ranging in size from 100 kb to 2 Mb, are distributed widely throughout the human genome, and that a high proportion of them encompass known genes. This unexpected level of genome variation has implications for our view of human genetic diversity and phenotypic variation.


Asunto(s)
Dosificación de Gen , Variación Genética , Genoma Humano , Humanos , Fenotipo
20.
Hum Mutat ; 33(6): 930-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26285306

RESUMEN

The range of commercially available array platforms and analysis software packages is expanding and their utility is improving, making reliable detection of copy-number variants (CNVs) relatively straightforward. Reliable interpretation of CNV data, however, is often difficult and requires expertise. With our knowledge of the human genome growing rapidly, applications for array testing continuously broadening, and the resolution of CNV detection increasing, this leads to great complexity in interpreting what can be daunting data. Correct CNV interpretation and optimal use of the genotype information provided by single-nucleotide polymorphism probes on an array depends largely on knowledge present in various resources. In addition to the availability of host laboratories' own datasets and national registries, there are several public databases and Internet resources with genotype and phenotype information that can be used for array data interpretation. With so many resources now available, it is important to know which are fit-for-purpose in a diagnostic setting. We summarize the characteristics of the most commonly used Internet databases and resources, and propose a general data interpretation strategy that can be used for comparative hybridization, comparative intensity, and genotype-based array data.


Asunto(s)
Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Pruebas Diagnósticas de Rutina , Internet , Programas Informáticos , Variación Genética , Genoma Humano , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Motor de Búsqueda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA