Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 54(1): 136-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26098770

RESUMEN

Endothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo. In PAECs isolated from patients with pulmonary arterial hypertension, microRNA (miR)-98 expression was reduced, and ET-1 protein levels and proliferation were increased. Similarly, hypoxia reduced miR-98 and increased ET-1 levels and PAEC proliferation in vitro. In vivo, hypoxia reduced miR-98 expression and increased ET-1 and proliferating cell nuclear antigen (PCNA) levels in mouse lung, derangements that were aggravated by treatment with the vascular endothelial growth factor receptor antagonist Sugen5416. Reporter assays confirmed that miR-98 binds directly to the ET-1 3'-untranslated region. Compared with littermate control mice, miR-98 levels were reduced and ET-1 and PCNA expression were increased in lungs from endothelial-targeted PPARγ knockout mice, whereas miR-98 levels were increased and ET-1 and PCNA expression was reduced in lungs from endothelial-targeted PPARγ-overexpression mice. Gain or loss of PPARγ function in PAECs in vitro confirmed that alterations in PPARγ were sufficient to regulate miR-98, ET-1, and PCNA expression. Finally, PPARγ activation with rosiglitazone regimens that attenuated hypoxia-induced PH in vivo and human PAEC proliferation in vitro restored miR-98 levels. The results of this study show that PPARγ regulates miR-98 to modulate ET-1 expression and PAEC proliferation. These results further clarify molecular mechanisms by which PPARγ participates in PH pathogenesis and therapy.


Asunto(s)
Células Endoteliales/metabolismo , Endotelina-1/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , MicroARNs/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal , Regiones no Traducidas 3' , Animales , Sitios de Unión , Proliferación Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelina-1/genética , Regulación de la Expresión Génica , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/patología , Indoles , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , PPAR gamma/agonistas , PPAR gamma/deficiencia , PPAR gamma/genética , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Pirroles , Interferencia de ARN , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología , Transfección , Remodelación Vascular
2.
Pulm Circ ; 7(1): 98-107, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28680569

RESUMEN

Chronic hypoxia-induced pulmonary hypertension (PH) is characterized by increased pressure and resistance in the pulmonary vasculature and hypertrophy of the right ventricle (RV). The transcription factors, nuclear factor activated T-cells (NFAT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB/p65) contribute to RV hypertrophy (RVH). Because peroxisome proliferator-activated receptor gamma (PPARγ) activation attenuates hypoxia-induced PH and RVH, we hypothesized that PPARγ inhibits activation of RV hypertrophic transcriptional signaling mechanisms. C57BL/6J mice were exposed to normoxia (21% O2) or hypoxia (10% O2) for 21 days. During the final 10 days of exposure, selected mice were treated with the PPARγ ligand, pioglitazone. RV systolic pressure (RVSP) and RVH were measured, and NFATc2 and NF-kB/p65 protein levels were measured in RV and LV nuclear and cytosolic fractions. Cardiomyocyte hypertrophy was assessed with wheatgerm agglutinin staining. NFAT activation was also examined with luciferase reporter mice and analysis of protein levels of selected transcriptional targets. Chronic-hypoxia increased: (1) RVH, RVSP, and RV cardiomyocyte hypertrophy; (2) NFATc2 and NF-κB activation in RV nuclear homogenates; (3) RV and LV NFAT luciferase activity; and (4) RV protein levels of brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MyHC). Treatment with pioglitazone attenuated hypoxia-induced increases in both RV and LV NFAT luciferase activity. Chronic hypoxia caused sustained RV NFATc2 and NF-κB activation. Pioglitazone attenuated PH, RVH, cardiomyocyte hypertrophy, and activation of RV hypertrophic signaling and also attenuated LV NFAT activation. PPARγ favorably modulates signaling derangements in the heart as well as in the pulmonary vascular wall.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA