RESUMEN
Persistence of residual disease in acute lymphoblastic leukemia (ALL) during the initial stages of chemotherapy is associated with inferior survival. To better understand clonal evolution and mechanisms of chemoresistance, we used multiparameter mass cytometry, at single-cell resolution, to functionally characterize pediatric B-ALL cells at disease presentation and those persisting during induction therapy. Analysis of ALL cells from presentation samples (n=42) showed that the most abundant phosphosignals were pCREB, pH2AX and pHH3 and we identified JAK-STAT and RAS pathway activation in five of six patients with JAK or RAS genetic aberrations. The clonal composition of ALL was heterogeneous and dynamic during treatment but all viable cell clusters showed pCREB activation. Levels of pCREB in ALL cells were increased or maintained during therapy and high dimensional analysis revealed a subpopulation of ALL cells at presentation that was positive for pCREB/pHH3/pS6 which increased during treatment in some patients, implicating this signaling node in conferring a survival advantage to multi-agent induction therapy. The small molecule CREB inhibitor, 666-15, was shown to reduce CREB transcriptional activity and induce apoptosis in ALL patient-derived xenograft cells of varying cytogenetic subtypes in vitro, both in the presence and absence of stromal support. Together, these data suggest that the cAMP signaling pathway may provide an opportunity for minimal residual disease-directed therapy for many patients at high risk of relapse.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Evolución Clonal/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transducción de SeñalRESUMEN
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. While there are a number of well-recognized prognostic biomarkers at diagnosis, the most powerful independent prognostic factor is the response of the leukemia to induction chemotherapy (Campana and Pui: Blood 129 (2017) 1913-1918). Given the potential for machine learning to improve precision medicine, we tested its capacity to monitor disease in children undergoing ALL treatment. Diagnostic and on-treatment bone marrow samples were labeled with an ALL-discriminating antibody combination and analyzed by imaging flow cytometry. Ignoring the fluorescent markers and using only features extracted from bright-field and dark-field cell images, a deep learning model was able to identify ALL cells at an accuracy of >88%. This antibody-free, single cell method is cheap, quick, and could be adapted to a simple, laser-free cytometer to allow automated, point-of-care testing to detect slow early responders. Adaptation to other types of leukemia is feasible, which would revolutionize residual disease monitoring. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Asunto(s)
Leucemia , Aprendizaje Automático , Niño , Computadores , Citometría de Flujo , Humanos , Leucemia/diagnóstico , Neoplasia ResidualRESUMEN
New drugs are needed for the treatment of relapsed acute lymphoblastic leukemia and preclinical evaluation of the MEK inhibitor, selumetinib, has shown that this drug has excellent activity in those leukemias with RAS pathway mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination indices for dexamethasone and selumetinib were determined in RAS pathway-mutated acute lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (combination index <0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the drug combination enhanced BIM upregulation over that achieved by a single drug alone. Dosing of dexamethasone and selumetinib singly and in combination in mice engrafted with primary-derived RAS pathway-mutated leukemia cells resulted in a marked reduction in spleen size which was significantly greater with the drug combination. Assessment of the central nervous system leukemia burden showed a significant reduction in the drug-treated mice, with no detectable leukemia in those treated with the drug combination. These data suggest that a selumetinib-dexamethasone combination may be highly effective in RAS pathway-mutated acute lymphoblastic leukemia. An international phase I/II clinical trial of dexamethasone and selumetinib (Seludex trial) is underway in children with multiply relapsed/refractory disease.
Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Bencimidazoles/administración & dosificación , Glucocorticoides/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas ras/genética , Adolescente , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Dexametasona/administración & dosificación , Sinergismo Farmacológico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Trasplante de Neoplasias , Regulación hacia ArribaRESUMEN
For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.
Asunto(s)
Bencimidazoles/uso terapéutico , Resistencia a Antineoplásicos/genética , Genes ras , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Línea Celular Tumoral , Niño , Ensayos Clínicos como Asunto , Frecuencia de los Genes , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Recurrencia , Transducción de Señal/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Glucocorticoid (GC) resistance is a continuing clinical problem in childhood acute lymphoblastic leukaemia (ALL) but the underlying mechanisms remain unclear. A proteomic approach was used to compare profiles of the B-lineage ALL GC-sensitive cell line, PreB 697, and its GC-resistant sub-line, R3F9, pre- and post-dexamethasone exposure. PAX5, a transcription factor critical to B-cell development was differentially regulated in the PreB 697 compared to the R3F9 cell line in response to GC. PAX5 basal protein expression was less in R3F9 compared to its GC-sensitive parent and confirmed to be lower in other GC-resistant sub-lines of Pre B 697 and was associated with a decreased expression of the PAX5 transcriptional target, CD19. Gene set enrichment analysis showed that increasing GC-resistance was associated with differentiation from preB-II to an immature B-lymphocyte stage. GC-resistant sub-lines were shown to have higher levels of phosphorylated JNK compared to the parent line and JNK inhibition caused re-sensitization to GC. Exploiting this maturation may be key to overcoming GC resistance and targeting signalling pathways linked to the maturation state, such as JNK, may be a novel approach.
Asunto(s)
Antineoplásicos/farmacología , Linfocitos B/efectos de los fármacos , Dexametasona/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Apoptosis/efectos de los fármacos , Linfocitos B/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Exones/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/fisiología , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en TándemRESUMEN
Casitas B-lineage lymphoma (CBL) proteins are RING finger ubiquitin E3 ligases that attenuate the signaling of receptor tyrosine kinases and are mutated in a number of myeloid disorders. In this study, mutational screening of the linker-RING domains of CBL and CBLB was performed by denaturing high performance liquid chromatography in a cohort of diagnostic (n = 180) or relapse (n = 46) samples from children with acute lymphoblastic leukemia. Somatic mutations were identified in three children, giving an overall incidence of 1.7% and involved small deletions affecting the intron/exon boundaries of exon 8, leading to skipping of exon 8 and abolishing E3 ligase function. Mutated primary samples were associated with constitutive activation of the RAS pathway and sensitivity to MEK inhibitors was shown. Thus, mutation of CBL is an alternative route to activate the RAS pathway and may identify children who are candidates for MEK inhibitor clinical trials.
Asunto(s)
Mutación , Proteína Oncogénica v-cbl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transducción de Señal/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Cromatografía Liquida , Estudios de Cohortes , Análisis Mutacional de ADN , Exones , Femenino , Humanos , Intrones , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Datos de Secuencia Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Dominios RING Finger , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Recurrencia , Reino UnidoRESUMEN
Inactivation of the tumor suppressor gene, CDKN2A, can occur by deletion, methylation, or mutation. We assessed the principal mode of inactivation in childhood acute lymphoblastic leukemia (ALL) and frequency in biologically relevant subgroups. Mutation or methylation was rare, whereas genomic deletion occurred in 21% of B-cell precursor ALL and 50% of T-ALL patients. Single nucleotide polymorphism arrays revealed copy number neutral (CNN) loss of heterozygosity (LOH) in 8% of patients. Array-based comparative genomic hybridization demonstrated that the mean size of deletions was 14.8 Mb and biallelic deletions composed a large and small deletion (mean sizes, 23.3 Mb and 1.4 Mb). Among 86 patients, only 2 small deletions were below the resolution of detection by fluorescence in situ hybridization. Patients with high hyperdiploidy, ETV6-RUNX1, or 11q23/MLL rearrangements had low rates of deletion (11%, 15%, 13%), whereas patients with t(9;22), t(1;19), TLX3, or TLX1 rearrangements had higher frequencies (61%, 42%, 78%, and 89%). In conclusion, CDKN2A deletion is a significant secondary abnormality in childhood ALL strongly correlated with phenotype and genotype. The variation in the incidence of CDKN2A deletions by cytogenetic subgroup may explain its inconsistent association with outcome. CNN LOH without apparent CDKN2A inactivation suggests the presence of other relevant genes in this region.
Asunto(s)
Eliminación de Gen , Dosificación de Gen , Regulación Leucémica de la Expresión Génica , Genes p16 , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Metilación de ADN , Femenino , Genómica , Hormona de Crecimiento Humana , Humanos , Hibridación Fluorescente in Situ , Incidencia , Pérdida de Heterocigocidad , Masculino , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologíaRESUMEN
Flow cytometric minimal residual disease (MRD) monitoring could become more powerful if directed towards the disease-maintaining leukemic stem cell (LSC) compartment. Using a cohort of 48 children with B-lineage acute lymphoblastic leukemia (ALL), we sought the newly proposed candidate-LSC population, CD34(+)CD38(low)CD19(+), at presentation and in end of induction bone marrow samples. We identified the candidate LSC population in 60% of diagnostic samples and its presence correlated with expression of CD38, relative to that of normal B-cell progenitors. In addition, the candidate LSC was not detectable in all MRD positive samples. The absence of the population in 40% of diagnostic and 40% of MRD positive samples does not support the use of this phenotype as a generic biomarker to track LSCs and suggests that this phenotype may be an artifact of CD38 underexpression rather than a biologically distinct LSC population. ClinicalTrials.gov Identifier: NCT00222612.
Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD19/metabolismo , Antígenos CD34/metabolismo , Neoplasia Residual/diagnóstico , Células Madre Neoplásicas/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Niño , Ensayos Clínicos como Asunto , Citometría de Flujo , Humanos , Inmunofenotipificación , Neoplasia Residual/inmunología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologíaRESUMEN
Minimal residual disease detection, used for clinical management of children with acute lymphoblastic leukemia, can be performed by molecular analysis of antigen-receptor gene rearrangements or by flow cytometric analysis of aberrant immunophenotypes. For flow minimal residual disease to be incorporated into larger national and international trials, a quality assured, standardized method is needed which can be performed in a multi-center setting. We report a four color, flow cytometric protocol established and validated by the UK acute lymphoblastic leukemia Flow minimal residual disease group. Quality assurance testing gave high inter-laboratory agreement with no values differing from a median consensus value by more than one point on a logarithmic scale. Prospective screening of B-ALL patients (n=206) showed the method was applicable to 88.3% of patients. The minimal residual disease in bone marrow aspirates was quantified and compared to molecular data. The combined risk category concordance (minimal residual disease levels above or below 0.01%) was 86% (n=134). Thus, this standardized protocol is highly reproducible between laboratories, sensitive, applicable, and shows good concordance with molecular-based analysis.
Asunto(s)
Citometría de Flujo/métodos , Leucemia de Células B/diagnóstico , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Antígenos CD19/análisis , Antígenos CD34/análisis , Niño , Citometría de Flujo/normas , Reordenamiento Génico , Humanos , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Neoplasia Residual/genética , Neoplasia Residual/metabolismo , Neprilisina/análisis , Reacción en Cadena de la Polimerasa , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Pronóstico , Estudios Prospectivos , Receptores de Antígenos de Linfocitos T/genética , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
The ETV6-RUNX1 fusion is the molecular consequence of the t(12;21)(p13;q22) seen in approximately 25% of children with acute lymphoblastic leukemia (ALL). Studies have shown that the fusion alone is insufficient for the initiation of leukemia; additional genetic changes are required. Genomic profiling identified copy number alterations at high frequencies in these patients. Focal deletions of TBL1XR1 were observed in 15% of cases; 3 patients exhibited deletions distal to the gene. Fluorescence in situ hybridization confirmed these deletions and quantitative RT-PCR showed that the TBL1XR1 gene was significantly under-expressed. TBL1XR1 is a key component of the SMRT and N-CoR compressor complexes, which control hormone-receptor mediated gene expression. Differential expression of the retinoic acid target genes, RARB, CRABP1, and CRABP2, indicated that deletion of TBL1XR1 compromised the function of SMRT/N-CoR in the appropriate control of gene expression. This study identifies deletions of TBL1XR1 as a recurrent abnormality in ETV6-RUNX1 positive ALL. We provide evidence that implicates this deletion in the inappropriate control of gene expression in these patients. The target of the interaction between TBL1XR1 and the signaling pathways described here may be exploited in cancer therapy.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Eliminación de Secuencia , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 21/genética , Humanos , Modelos Genéticos , Translocación GenéticaRESUMEN
In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.
Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 21 , Pérdida de Heterocigocidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas/genética , Proteínas Adaptadoras Transductoras de Señales , Humanos , Interleucina-7/farmacología , Péptidos y Proteínas de Señalización Intracelular , Mutación , Factor de Transcripción STAT5/fisiologíaRESUMEN
Genomic copy number changes are detectable in many malignancies, including neuroblastoma, using techniques such as comparative genomic hybridization (CGH), microsatellite analysis, conventional karyotyping, and fluorescence in situ hybridization (FISH). We report the use of 10K single nucleotide polymorphism (SNP) microarrays to detect copy number changes and allelic imbalance in six neuroblastoma cell lines (IMR32, SHEP, NBL-S, SJNB-1, LS, and SKNBE2c). SNP data were generated using the GeneChip DNA Analysis and GeneChip chromosome copy number software (Affymetrix). SNP arrays confirmed the presence of all previously reported cytogenetic abnormalities in the cell lines, including chromosome 1p deletion, MYCN amplification, gain of 17q and 11q, and 14q deletions. In addition, the SNP arrays revealed several chromosome gains and losses not detected by CGH or karyotyping; these included gain of 8q21.1 approximately 24.3 and gain of chromosome 12 in IMR-32 cells; loss at 4p15.3 approximately 16.1 and loss at 16p12.3 approximately 13.2, 11q loss with loss of heterozygosity (LOH) at 11q14.3 approximately 23.3 in SJNB-1 cells; and loss at 8p21.2 approximately 23.3 and 9p21.3 approximately 22.1 with corresponding LOH in SHEP cells. The SNP arrays refined the mapping of the 2p amplicons in LS, BE2c, and IMR-32 cell lines, the 12q amplicon in LS cells, and also identified an 11q13 amplicon in LS cells. There was good concordance among SNP arrays, CGH, and karyotyping. SNP array analysis is a powerful tool for the detection of allelic imbalance in neuroblastoma and also allows identification of LOH without changes in copy number (uniparental disomy).
Asunto(s)
Desequilibrio Alélico/genética , Neuroblastoma/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Línea Celular Tumoral , Deleción Cromosómica , Análisis Mutacional de ADN , Dosificación de Gen/genética , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Recurrencia Local de Neoplasia/genéticaRESUMEN
Loss of heterozygosity (LOH) is detectable in many forms of malignancy, including leukemia, using techniques such as microsatellite analysis and comparative genomic hybridization. However, these techniques are laborious and require the use of relatively large amounts of DNA if the whole genome is to be examined. Here we describe the use of oligonucleotide microarrays to characterize single nucleotide polymorphisms (SNPs) in lymphoblasts isolated from children with acute lymphoblastic leukemia for the pan-genomic mapping of LOH with a resolution of 100 to 200 kb. Results were compared with DNA obtained during remission and on relapse. Abnormalities were seen in 8 of 10 cases. The two cases with no abnormalities and one case that showed identical changes at relapse and presentation remain in remission 1 to 9 years following retreatment. The remaining seven patients died following relapse. In four cases, LOH was only detectable at relapse suggesting that progressive LOH may be a cause of disease progression and/or drug resistance. This was supported by detailed analysis of one case in which LOH involving the glucocorticoid receptor was associated with mutation of the remaining allele. The most frequent abnormality detected involved chromosome 9p. In each of the four cases where this was observed LOH included the INK4 locus. In three of the four cases, INK4 loss was only observed at relapse, suggesting that this abnormality may be commonly associated with treatment failure. These observations show that SNP array analysis is a powerful new tool for the analysis of allelic imbalance in leukemic blasts.
Asunto(s)
Pérdida de Heterocigocidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Niño , Preescolar , Genoma Humano , Humanos , Lactante , Masculino , Repeticiones de Microsatélite/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , RecurrenciaRESUMEN
Deregulation of the RAS-RAF-mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK signaling cascade is often caused by somatic mutations in genes encoding proteins which influence the activity of this pathway and include NRAS, KRAS2, FLT3, PTPN11, and BRAF. We report the first comprehensive mutational screen of key exons of these genes in a large cohort of unselected acute lymphoblastic leukemia (ALL) cases at diagnosis (n = 86) and in a more selected cohort at disease recurrence (n = 47) using the sensitive method of denaturing high-performance liquid chromatography. We show that somatic mutations that deregulate the pathway constitute one of the most common genetic aberrations in childhood ALL (cALL), being found in 35% of diagnostic and 25% of relapse samples. In matched presentation/relapse pairs, mutations predominating at relapse could be shown to be present at very low levels at diagnosis using allele-specific PCR, thus implicating the mutated clone in disease progression. Importantly, in primary samples, we show that mutations are associated with activated ERK and differential cytotoxicity to MEK-ERK inhibitors was shown for some patients. Inhibitors of the pathway, which are currently undergoing clinical trial, may be a novel therapeutic option for cALL, particularly at relapse.
Asunto(s)
Genes ras/fisiología , Mutación/genética , Recurrencia Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteínas ras/genética , Adolescente , Western Blotting , Supervivencia Celular , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Inhibidores Enzimáticos/farmacología , Exones/genética , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Recurrencia Local de Neoplasia/patología , Fragmentos de Péptidos , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras) , Inducción de Remisión , Células Tumorales Cultivadas , Tirosina Quinasa 3 Similar a fms/genéticaRESUMEN
The MSH3 and dihydrofolate reductase (DHFR) genes, located on chromosome 5, share a common promoter but are divergently transcribed. Dysregulation of the mismatch repair (MMR) pathway has been found to occur in cell line models due to co-amplification of MSH3 as a coincident effect of DHFR amplification, acquired as a mechanism generating resistance to methotrexate (MTX). The increased levels of MSH3 perturbed MutSalpha function resulting in hypermutability and increased resistance to thiopurines, drugs whose cytotoxic effects are triggered by MutSalpha. The relevance of this phenomenon in clinical samples is unknown but is extremely pertinent in childhood acute lymphoblastic leukaemia (ALL) in which children are exposed for prolonged periods to both MTX and thiopurines such that a single amplification event involving both the DHFR and the MSH3 genes may cause chemotherapeutic resistance to both agents. Thus, we have generated a leukaemic cell line (PreB697) and a normal human lymphoblastoid cell line (TK6) that are resistant to a pharmacologically relevant dose of MTX and show that while increased DHFR levels result in MTX resistance, the associated increased levels of MSH3 are insufficient to perturb MutSalpha functionality, in terms of MMR capacity or 6-thioguanine sensitivity. In addition, we show that although low-level DHFR amplification occurs alone in a significant number of samples, both at disease onset and relapse, co-amplification of both MSH3 and DHFR is rarely found in primary ALL samples, even after prolonged MTX therapy and is not at a sufficiently high level to perturb MMR function.