Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Genome ; 15(2): e20200, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35307964

RESUMEN

The ability to accurately quantify the simultaneous effect of multiple genomic loci on multiple traits is now possible due to current and emerging high-throughput genotyping and phenotyping technologies. To date, most efforts to quantify these genotype-to-phenotype relationships have focused on either multi-trait models that test a single marker at a time or multi-locus models that quantify associations with a single trait. Therefore, the purpose of this study was to compare the performance of a multi-trait, multi-locus stepwise (MSTEP) model selection procedure we developed to (a) a commonly used multi-trait single-locus model and (b) a univariate multi-locus model. We used real marker data in maize (Zea mays L.) and soybean (Glycine max L.) to simulate multiple traits controlled by various combinations of pleiotropic and nonpleiotropic quantitative trait nucleotides (QTNs). In general, we found that both multi-trait models outperformed the univariate multi-locus model, especially when analyzing a trait of low heritability. For traits controlled by either a combination of pleiotropic and nonpleiotropic QTNs or a large number of QTNs (i.e., 50), our MSTEP model often outperformed at least one of the two alternative models. When applied to the analysis of two tocochromanol-related traits in maize grain, MSTEP identified the same peak-associated marker that has been reported in a previous study. We therefore conclude that MSTEP is a useful addition to the suite of statistical models that are commonly used to gain insight into the genetic architecture of agronomically important traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Glycine max/genética , Zea mays/genética
2.
Brief Bioinform ; 10(6): 664-75, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19933212

RESUMEN

Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Ligamiento Genético/genética , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Programas Informáticos , Simulación por Computador
3.
Bioinformatics ; 23(19): 2633-5, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17586829

RESUMEN

Association analyses that exploit the natural diversity of a genome to map at very high resolutions are becoming increasingly important. In most studies, however, researchers must contend with the confounding effects of both population and family structure. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) implements general linear model and mixed linear model approaches for controlling population and family structure. For result interpretation, the program allows for linkage disequilibrium statistics to be calculated and visualized graphically. Database browsing and data importation is facilitated by integrated middleware. Other features include analyzing insertions/deletions, calculating diversity statistics, integration of phenotypic and genotypic data, imputing missing data and calculating principal components.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Análisis Mutacional de ADN/métodos , Variación Genética/genética , Desequilibrio de Ligamiento/genética , Sitios de Carácter Cuantitativo/genética , Programas Informáticos , Interpretación Estadística de Datos
4.
Nucleic Acids Res ; 34(Database issue): D717-23, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381966

RESUMEN

Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http://www.fao.org; USDA 1997, http://www.usda.gov). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of approximately 400 Mbp, has been sequenced and annotated. The Gramene database (http://www.gramene.org) takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606-1613], the database has undergone extensive changes that are described in this publication.


Asunto(s)
Mapeo Cromosómico , Bases de Datos Genéticas , Grano Comestible/genética , Genoma de Planta , Arabidopsis/genética , Genes de Plantas , Marcadores Genéticos , Genómica , Internet , Oryza/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Interfaz Usuario-Computador , Vocabulario Controlado , Zea mays/genética
5.
PLoS One ; 9(2): e90346, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587335

RESUMEN

Genotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers. The relatively straightforward, robust, and cost-effective GBS protocol is currently being applied in numerous species by a large number of researchers. Herein we describe a bioinformatics pipeline, TASSEL-GBS, designed for the efficient processing of raw GBS sequence data into SNP genotypes. The TASSEL-GBS pipeline successfully fulfills the following key design criteria: (1) Ability to run on the modest computing resources that are typically available to small breeding or ecological research programs, including desktop or laptop machines with only 8-16 GB of RAM, (2) Scalability from small to extremely large studies, where hundreds of thousands or even millions of SNPs can be scored in up to 100,000 individuals (e.g., for large breeding programs or genetic surveys), and (3) Applicability in an accelerated breeding context, requiring rapid turnover from tissue collection to genotypes. Although a reference genome is required, the pipeline can also be run with an unfinished "pseudo-reference" consisting of numerous contigs. We describe the TASSEL-GBS pipeline in detail and benchmark it based upon a large scale, species wide analysis in maize (Zea mays), where the average error rate was reduced to 0.0042 through application of population genetic-based SNP filters. Overall, the GBS assay and the TASSEL-GBS pipeline provide robust tools for studying genomic diversity.


Asunto(s)
Técnicas de Genotipaje/métodos , Programas Informáticos , Zea mays/genética , Animales , Cruzamiento , Minería de Datos , Genética de Población , Técnicas de Genotipaje/economía , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple
6.
Genome Biol ; 14(6): R55, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23759205

RESUMEN

BACKGROUND: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world. RESULTS: The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits. CONCLUSIONS: The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.


Asunto(s)
Cruzamiento , Genoma de Planta , Genotipo , Semillas/genética , Zea mays/genética , Alelos , Bancos de Muestras Biológicas , Mapeo Cromosómico , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Semillas/clasificación , Estados Unidos
7.
Bioinformatics ; 20(16): 2839-40, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15105279

RESUMEN

UNLABELLED: The goal of this project is to simplify access to genomic diversity and phenotype data, thereby encouraging reuse of this data. The Genomic Diversity and Phenotype Connection (GDPC) accomplishes this by retrieving data from one or more data sources and by allowing researchers to analyze integrated data in a standard format. GDPC is written in JAVA and provides (1) data sources available as web services that transfer XML formatted data via the SOAP protocol; (2) a JAVA API for programmatic access to data sources; and (3) a front-end application that allows users to manage data sources, retrieve data based on filters, sort/group data based on property values and save/open the data as XML files. AVAILABILITY: The source code, compiled code, documentation and GDPC Browser are freely available at: www.maizegenetics.net/gdpc/index.html the current release of GDPC is version 1.0, with updated releases planned for the future. Comments are welcome.


Asunto(s)
Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Almacenamiento y Recuperación de la Información/métodos , Investigación , Programas Informáticos , Interfaz Usuario-Computador , Variación Genética , Difusión de la Información/métodos , Internet , Fenotipo , Lenguajes de Programación , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA