Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Immunol ; 66: 101731, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863140

RESUMEN

Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Edición Génica/métodos , Terapia Genética/métodos , Vectores Genéticos/genética
2.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32387109

RESUMEN

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Trasplante de Médula Ósea , Proteínas de Homeodominio/genética , Inmunoconjugados/farmacología , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Saporinas/farmacología , Inmunodeficiencia Combinada Grave/terapia , Acondicionamiento Pretrasplante , Aloinjertos , Animales , Anticuerpos Monoclonales/efectos adversos , Proteínas de Homeodominio/inmunología , Inmunoconjugados/efectos adversos , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Ratones , Ratones Noqueados , Saporinas/efectos adversos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología
3.
J Allergy Clin Immunol ; 144(3): 825-838, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30926529

RESUMEN

BACKGROUND: Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. OBJECTIVE: We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. METHODS: We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. RESULTS: We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. CONCLUSIONS: Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia.


Asunto(s)
Plaquetas/fisiología , Terapia Genética , Lentivirus/genética , Síndrome de Wiskott-Aldrich/sangre , Síndrome de Wiskott-Aldrich/terapia , Adolescente , Adulto , Plaquetas/ultraestructura , Niño , Preescolar , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Masculino , Microscopía Electrónica de Transmisión , Fenotipo , Activación Plaquetaria , Recuento de Plaquetas , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
4.
J Allergy Clin Immunol ; 142(3): 928-941.e8, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29241731

RESUMEN

BACKGROUND: Omenn syndrome (OS) is a rare severe combined immunodeficiency associated with autoimmunity and caused by defects in lymphoid-specific V(D)J recombination. Most patients carry hypomorphic mutations in recombination-activating gene (RAG) 1 or 2. Hematopoietic stem cell transplantation is the standard treatment; however, gene therapy (GT) might represent a valid alternative, especially for patients lacking a matched donor. OBJECTIVE: We sought to determine the efficacy of lentiviral vector (LV)-mediated GT in the murine model of OS (Rag2R229Q/R229Q) in correcting immunodeficiency and autoimmunity. METHODS: Lineage-negative cells from mice with OS were transduced with an LV encoding the human RAG2 gene and injected into irradiated recipients with OS. Control mice underwent transplantation with wild-type or OS-untransduced lineage-negative cells. Immunophenotyping, T-dependent and T-independent antigen challenge, immune spectratyping, autoantibody detection, and detailed tissue immunohistochemical analyses were performed. RESULTS: LV-mediated GT allowed immunologic reconstitution, although it was suboptimal compared with that seen in wild-type bone marrow (BM)-transplanted OS mice in peripheral blood and hematopoietic organs, such as the BM, thymus, and spleen. We observed in vivo variability in the efficacy of GT correlating with the levels of transduction achieved. Immunoglobulin levels and T-cell repertoire normalized, and gene-corrected mice responded properly to challenges in vivo. Autoimmune manifestations, such as skin infiltration and autoantibodies, dramatically improved in GT mice with a vector copy number/genome higher than 1 in the BM and 2 in the thymus. CONCLUSIONS: Our data show that LV-mediated GT for patients with OS significantly ameliorates the immunodeficiency, even in an inflammatory environment.


Asunto(s)
Proteínas de Unión al ADN/genética , Terapia Genética , Lentivirus/genética , Inmunodeficiencia Combinada Grave/terapia , Animales , Autoinmunidad , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Inflamación/terapia , Recuento de Linfocitos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T/inmunología
5.
J Allergy Clin Immunol ; 142(4): 1272-1284, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29421274

RESUMEN

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. OBJECTIVE: To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. METHODS: Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. RESULTS: CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. CONCLUSION: Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity.


Asunto(s)
Plaquetas/inmunología , Síndrome de Wiskott-Aldrich/inmunología , Adolescente , Adulto , Animales , Autoinmunidad , Ligando de CD40/inmunología , Niño , Preescolar , Femenino , Humanos , Lactante , Inflamación/sangre , Inflamación/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Recuento de Plaquetas , Síndrome de Wiskott-Aldrich/sangre , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/inmunología , Adulto Joven
6.
J Immunol ; 194(9): 4144-53, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825446

RESUMEN

The immune and the skeletal system are tightly interconnected, and B lymphocytes are uniquely endowed with osteo-interactive properties. In this context, receptor activator of NF-κB (RANK) ligand (RANKL) plays a pivotal role in lymphoid tissue formation and bone homeostasis. Although murine models lacking RANK or RANKL show defects in B cell number, the role of the RANKL-RANK axis on B physiology is still a matter of debate. In this study, we have characterized in detail B cell compartment in Rankl(-/-) mice, finding a relative expansion of marginal zone B cells, B1 cells, and plasma cells associated with increased Ig serum levels, spontaneous germinal center formation, and hyperresponse to CD40 triggering. Such abnormalities were associated with an increased frequency of regulatory B cells and augmented B cell-derived IL-10 production. Remarkably, in vivo IL-10-R blockade reduced T cell-triggered plasma cell differentiation and restrained the expansion of regulatory B cells. These data point to a novel role of the RANKL-RANK axis in the regulation of B cell homeostasis and highlight an unexpected link between IL-10 CD40 signaling and the RANKL pathway.


Asunto(s)
Linfocitos B/inmunología , Interleucina-10/inmunología , Ligando RANK/deficiencia , Ligando RANK/inmunología , Animales , Ratones , Ratones Noqueados
7.
J Allergy Clin Immunol ; 136(3): 692-702.e2, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25792466

RESUMEN

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene-corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. OBJECTIVE: Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. METHODS: We evaluated B-cell counts, B-cell subset distribution, B cell-activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. RESULTS: After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19(+)CD21(-)CD35(-) and CD21(low) B cells and a reduction in B cell-activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. CONCLUSIONS: We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Autoanticuerpos/biosíntesis , Factor Activador de Células B/genética , Factor Activador de Células B/metabolismo , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/patología , Niño , Preescolar , Expresión Génica , Perfilación de la Expresión Génica , Vectores Genéticos , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunoglobulinas/biosíntesis , Inmunofenotipificación , Lactante , Lentivirus/genética , Masculino , Proteínas Recombinantes de Fusión/uso terapéutico , Transducción Genética , Acondicionamiento Pretrasplante , Trasplante Autólogo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/inmunología , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/inmunología
8.
J Allergy Clin Immunol ; 133(3): 799-806.e10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24506932

RESUMEN

BACKGROUND: Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. OBJECTIVE: We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. METHODS: Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. RESULTS: Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. CONCLUSIONS: ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT.


Asunto(s)
Adenosina Desaminasa/deficiencia , Linfocitos B/fisiología , Terapia de Reemplazo Enzimático , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Adenosina Desaminasa/genética , Adenosina Desaminasa/uso terapéutico , Adolescente , Factor Activador de Células B/fisiología , Linfocitos B/inmunología , Niño , Preescolar , Humanos , Lactante
9.
J Autoimmun ; 50: 42-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24369837

RESUMEN

Wiskott-Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott-Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21(low) B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of immune dysregulation concurring to the increased susceptibility to develop autoimmunity in WAS patients.


Asunto(s)
Autoinmunidad , Linfocitos B/inmunología , Susceptibilidad a Enfermedades/inmunología , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Síndrome de Wiskott-Aldrich/inmunología , Factor Activador de Células B/sangre , Factor Activador de Células B/genética , Factor Activador de Células B/inmunología , Linfocitos B/patología , Médula Ósea/inmunología , Médula Ósea/patología , Diferenciación Celular , Movimiento Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/inmunología , Expresión Génica , Homeostasis/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Memoria Inmunológica , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/inmunología , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/inmunología
10.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324638

RESUMEN

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Asunto(s)
Edición Génica , Trasplante de Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Exones , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA