Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Physiol Cell Physiol ; 326(3): C742-C748, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284125

RESUMEN

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues. In the present study, we assessed the expression of CFTR in human submandibular and parotid glands. Consistent with findings in rodent salivary glands, our immunolocalization studies show that CFTR is expressed in duct cells. However, CFTR expression in human salivary glands differs from that in rodents, as immunolocalization and single-cell RNA sequencing analysis from a previous study performed in the human parotid gland revealed the presence of CFTR protein and transcripts within a distinct cell cluster. Based on cell marker expression, this cluster corresponds to acinar cells. To obtain functional evidence supporting CFTR expression, we isolated human parotid acinar cells through collagenase digestion. Acinar cells displayed an anion conductance that was activated in response to cAMP-increasing agents and was effectively blocked by CFTRInh172, a known CFTR blocker. This study provides novel evidence of CFTR expression within acinar cells of human salivary glands. This finding challenges the established model positioning CFTR exclusively in duct cells from exocrine glands.NEW & NOTEWORTHY This study addresses the uncertainty about the impact of CFTR on human salivary gland function. We found CFTR transcripts in a subset of duct cells known as ionocytes, as well as in acinar cells. Isolated human parotid acinar cells exhibited Cl- conductance consistent with CFTR activity. This marks the first documented evidence of functional CFTR expression in human salivary gland acinar cells.


Asunto(s)
Células Acinares , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Humanos , Ratas , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Glándulas Salivales/metabolismo , Glándula Submandibular/metabolismo , Glándula Parótida/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674160

RESUMEN

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Asunto(s)
Potasio , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Sitios de Unión , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros/metabolismo , Transporte Iónico , Simulación de Dinámica Molecular , Potasio/metabolismo , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163595

RESUMEN

In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled to the circadian rhythm of the host. On the other hand, a close correlation between increased body weight and light pollution at night has been reported in humans and animal models. However, the mechanisms underlying such weight gain in response to light contamination at night remain elusive. In the present study, we tested the hypothesis that dim light pollution at night alters the colonic microbiota of mice, which could correlate with weight gain in the animals. By developing an experimental protocol using a mouse model that mimics light contamination at night in urban residences (dLAN, dim light at night), we found that mice exposed to dLAN showed a significant weight gain compared with mice exposed to control standard light/dark (LD) photoperiod. To identify possible changes in the microbiota, we sampled two stages from the resting period of the circadian cycle of mice (ZT0 and ZT10) and evaluated them by high-throughput sequencing technology. Our results indicated that microbial diversity significantly differed between ZT0 and ZT10 in both LD and dLAN samples and that dLAN treatment impacted the taxonomic composition, functions, and interactions of mouse colonic microbiota. Together, these results show that bacterial taxa and microbial metabolic pathways might be involved with the mechanisms underlying weight gain in mice subjected to light contamination at night.


Asunto(s)
Colon/microbiología , Microbioma Gastrointestinal , Contaminación Lumínica/efectos adversos , Aumento de Peso , Animales , Ratones
4.
Molecules ; 27(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630811

RESUMEN

Senecio nutans Sch. Bip. and its constituents are reported to have antihypertensive effects. We isolated metabolite−1, a natural compound from S. nutans (4-hydroxy-3-(isopenten-2-yl)-acetophenone), and synthesized novel oxime − 1 (4-hydroxy-3-(isopenten-2-yl)-acetophenoxime) to evaluate their effect on vascular reactivity. Compounds were purified (metabolite−1) or synthetized (oxime−1) and characterized using IR and NMR spectroscopy and Heteronuclear Multiple Quantum Coherence (HMQC). Using pharmacological agents such as phenylephrine (PE) and KCl (enhancing contraction), acetylcholine (ACh), L-NAME (nitric oxide (NO) and endothelial function), Bay K8644-induced CaV1.2 channel (calcium channel modulator), and isolated aortic rings in an organ bath setup, the possible mechanisms of vascular action were determined. Pre-incubation of aortic rings with 10−5 M oxime−1 significantly (p < 0.001) decreased the contractile response to 30 mM KCl. EC50 to KCl significantly (p < 0.01) increased in the presence of oxime−1 (37.72 ± 2.10 mM) compared to that obtained under control conditions (22.37 ± 1.40 mM). Oxime−1 significantly reduced (p < 0.001) the contractile response to different concentrations of PE (10−7 to 10−5 M) by a mechanism that decreases Cav1.2-mediated Ca2+ influx from the extracellular space and reduces Ca2+ release from intracellular stores. At a submaximal concentration (10−5 M), oxime−1 caused a significant relaxation in rat aorta even without vascular endothelium or after pre-incubate the tissue with L-NAME. Oxime−1 decreases the contractile response to PE by blunting the release of Ca2+ from intracellular stores and blocking of Ca2+ influx by channels. Metabolite−1 reduces the contractile response to KCl, apparently by reducing the plasma membrane depolarization and Ca2+ influx from the extracellular space. These acetophenone derivates from S. nutans (metabolite−1 and oxime−1) cause vasorelaxation through pathways involving an increase of the endothelial NO generation or a higher bioavailability, further highlighting that structural modification of naturally occurring metabolites can enhance their intended pharmacological functions.


Asunto(s)
Productos Biológicos , Senecio , Acetofenonas/farmacología , Animales , Aorta Torácica , Productos Biológicos/farmacología , Endotelio Vascular/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Oximas/farmacología , Fenilefrina/farmacología , Ratas , Vasodilatadores/química , Vasodilatadores/farmacología
5.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G628-G638, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34585968

RESUMEN

Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to ß-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is coexpressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular NH2-terminal domain according to a homology model of Ae4. NH2-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.NEW & NOTEWORTHY We found that Ae4 exchanger activity in secretory salivary gland acinar cells is increased upon ß-adrenergic receptor stimulation. The activation of Ae4 was prevented by H89, a nonselective PKA inhibitor. Protein sequence analysis revealed two residues (S173 and S273) that are potential targets of cAMP-dependent protein kinase (PKA). Experiments in CHO-K1 cells expressing S173A and S273A mutants showed that S173A, but not S273A, is not activated by PKA.


Asunto(s)
Células Acinares/enzimología , Antiportadores de Cloruro-Bicarbonato/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Glándulas Salivales/enzimología , Animales , Células CHO , Antiportadores de Cloruro-Bicarbonato/química , Antiportadores de Cloruro-Bicarbonato/genética , Cricetulus , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Mutación , Fosforilación , Conformación Proteica , Glándulas Salivales/citología , Relación Estructura-Actividad
6.
Am J Physiol Cell Physiol ; 316(5): C690-C697, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840492

RESUMEN

The mechanisms underlying the functional differences in sympathetic and parasympathetic regulation of the major salivary glands have received little attention. The acute effects of parasympathetic muscarinic (carbachol)-dependent and combined parasympathetic-dependent plus cAMP-dependent pathways on fluid secretion rates, ion composition, and protein content were assessed using a newly developed ex vivo preparation that allows the simultaneous perfusion of the mouse submandibular (SMGs) and sublingual glands (SLGs). Our results confirm that the muscarinic-dependent pathway accounts for the bulk of salivation in SMGs and SLGs, whereas costimulation with a cAMP-increasing agent (forskolin, isoproterenol, or vasoactive intestinal peptide) did not increase the flow rate. Costimulation with carbachol plus the ß-adrenergic agonist isoproterenol decreased the concentration of NaCl and produced a substantial increase in the protein and Ca2+ content of SMG but not SLG saliva, consistent with a sparse sympathetic innervation of the SLGs. On the other hand, forskolin, which bypasses receptors to increase intracellular cAMP by directly activating the enzyme adenylate cyclase, enhanced the secretion of protein and Ca2+ by both the SMGs and SLGs. In contrast, isoproterenol and vasoactive intestinal peptide specifically stimulated protein secretion in SMG and SLG salivas, respectively. In summary, cAMP-dependent signaling does not play a major role in the stimulation of fluid secretion in SMGs and SLGs, whereas each cAMP-increasing agonist behaves differently in a gland-specific manner suggesting differential expression of G protein-coupled receptors in the epithelial cells of SMGs and SLGs.


Asunto(s)
AMP Cíclico/metabolismo , Saliva/metabolismo , Secretagogos/farmacología , Glándula Sublingual/metabolismo , Glándula Submandibular/metabolismo , Animales , Carbacol/farmacología , Colforsina/farmacología , AMP Cíclico/agonistas , Ratones , Ratones de la Cepa 129 , Técnicas de Cultivo de Órganos , Saliva/efectos de los fármacos , Glándula Sublingual/efectos de los fármacos , Glándula Submandibular/efectos de los fármacos
8.
Bull Math Biol ; 80(2): 255-282, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29209914

RESUMEN

We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of [Formula: see text] ions from the internal stores of acinar cells, which triggers saliva secretion. [Formula: see text]-dependent [Formula: see text] and [Formula: see text] channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that [Formula: see text] anion exchangers (Ae), coupled with a basolateral [Formula: see text] ([Formula: see text]) (Nhe1) antiporter, regulate intracellular pH and act as a secondary [Formula: see text] uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823-G837, 1992; Melvin et al. in Annu Rev Physiol 67:445-469, 2005. https://doi.org/10.1146/annurev.physiol.67.041703.084745 ). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate [Formula: see text] decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677-10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary [Formula: see text] uptake and thus a key mechanism for saliva secretion. Here, by using 'in-silico' Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger's cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.


Asunto(s)
Antiportadores de Cloruro-Bicarbonato/fisiología , Modelos Biológicos , Glándulas Salivales/metabolismo , Células Acinares/metabolismo , Animales , Señalización del Calcio , Antiportadores de Cloruro-Bicarbonato/deficiencia , Antiportadores de Cloruro-Bicarbonato/genética , Simulación por Computador , Técnicas de Silenciamiento del Gen , Humanos , Transporte Iónico , Conceptos Matemáticos , Ratones , Saliva/metabolismo , Glándulas Salivales/citología
9.
Proc Natl Acad Sci U S A ; 112(7): 2263-8, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646474

RESUMEN

Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the ß-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that ß-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.


Asunto(s)
Canales de Cloruro/genética , Glándulas Salivales/metabolismo , Células Acinares/metabolismo , Animales , Anoctamina-1 , Ratones , Ratones Noqueados , Receptores Adrenérgicos beta/fisiología , Saliva/metabolismo
10.
Int J Mol Sci ; 19(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126179

RESUMEN

Two-pore domain K⁺ channels (K2P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the presence of the cap explains the insensitivity of K2P channels to several K⁺ channel blockers including tetraethylammonium (TEA). We have explored this hypothesis using mutagenesis and functional analysis, followed by molecular simulations. Our results show that the deletion of the cap structure of TASK-3 (TWIK-related acid-sensitive K⁺ channel) generates a TEA-sensitive channel with an IC50 of 11.8 ± 0.4 mM. The enhanced sensitivity to TEA displayed by the cap-less channel is also explained by the presence of an extra tyrosine residue at position 99. These results were corroborated by molecular simulation analysis, which shows an increased stability in the binding of TEA to the cap-less channel when a ring of four tyrosine is present at the external entrance of the permeation pathway. Consistently, Y99A or Y205A single-residue mutants generated in a cap-less channel backbone resulted in TASK-3 channels with low affinity to external TEA.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio Shab/antagonistas & inhibidores , Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Animales , Cobayas , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación Puntual , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Canales de Potasio Shab/química , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo
11.
J Biol Chem ; 290(17): 10677-88, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25745107

RESUMEN

Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl(-)/HCO3 (-) exchangers. We found that salivation stimulated by muscarinic and ß-adrenergic receptor agonists was normal in the submandibular glands of Ae2(-/-) mice. In contrast, saliva secretion was reduced by 35% in Ae4(-/-) mice. The decrease in salivation was not related to loss of Na(+)-K(+)-2Cl(-) cotransporter or Na(+)/H(+) exchanger activity in Ae4(-/-) mice but correlated with reduced Cl(-) uptake during ß-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl(-)/HCO3 (-) exchanger activity revealed that HCO3 (-)-dependent Cl(-) uptake was reduced in the acinar cells of Ae2(-/-) and Ae4(-/-) mice. Moreover, Cl(-)/HCO3 (-) exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl(-)/HCO3 (-) exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.


Asunto(s)
Células Acinares/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Glándula Submandibular/metabolismo , Animales , Bicarbonatos/metabolismo , Antiportadores de Cloruro-Bicarbonato/deficiencia , Antiportadores de Cloruro-Bicarbonato/genética , AMP Cíclico/metabolismo , Femenino , Transporte Iónico , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Saliva/metabolismo , Glándula Submandibular/citología
12.
Arthritis Rheum ; 65(12): 3228-38, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23982860

RESUMEN

OBJECTIVE: Primary Sjögren's syndrome (SS) is characterized by autoimmune activation and loss of function in secretory epithelia. The present study was undertaken to investigate and characterize changes in the epithelia associated with the loss of gland function in primary SS. METHODS: To identify changes in epithelial gene expression, custom microarrays were probed with complementary RNA (cRNA) isolated from minor salivary glands (MSGs) of female patients with primary SS who had low focus scores and low salivary flow rates, and the results were compared with those obtained using cRNA from the MSGs of sex-matched healthy volunteers. The effect of bone morphogenetic protein 6 (BMP-6) on salivary gland function was tested using adeno-associated virus-mediated gene transfer to the salivary glands of C57BL/6 mice. RESULTS: A significant increase in expression of BMP-6 was observed in RNA isolated from SS patients compared with healthy volunteers. Overexpression of BMP-6 locally in the salivary or lacrimal glands of mice resulted in the loss of fluid secretion as well as changes in the connective tissue of the salivary gland. Assessment of the fluid movement in either isolated acinar cells from mice overexpressing BMP-6 or a human salivary gland cell line cultured with BMP-6 revealed a loss in volume regulation in these cells. Lymphocytic infiltration in the submandibular gland of BMP-6 vector-treated mice was increased. No significant changes in the production of proinflammatory cytokines or autoantibodies associated with SS (anti-Ro/SSA and anti-La/SSB) were found after BMP-6 overexpression. CONCLUSION: In addition to identifying BMP-6 expression in association with xerostomia and xerophthalmia in primary SS, the present results suggest that BMP-6-induced salivary and lacrimal gland dysfunction in primary SS is independent of the autoantibodies and immune activation associated with the disease.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Aparato Lagrimal/metabolismo , Glándulas Salivales/metabolismo , Síndrome de Sjögren/metabolismo , Animales , Autoanticuerpos/metabolismo , Proteína Morfogenética Ósea 6/genética , Femenino , Técnicas de Transferencia de Gen , Humanos , Aparato Lagrimal/inmunología , Aparato Lagrimal/fisiopatología , Ratones , Ratones Endogámicos C57BL , Glándulas Salivales/inmunología , Glándulas Salivales/fisiopatología , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/fisiopatología , Xerostomía/inmunología , Xerostomía/metabolismo , Xerostomía/fisiopatología
13.
RSC Adv ; 14(14): 9933-9942, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38528924

RESUMEN

Senecio nutans Sch. Bip is an endemic plant commonly employed in the Andes culture to counteract the effects of mountain sickness, and its bioactive molecules could provide new drugs for treating hypertension. The purpose was to determine whether the vascular response of the plant bioactive molecules, such as (5-acetyl-6-hydroxy-2-isopropenyl-2,3-dihydrobenzofurane; Sn-I), could be improved by a simple structural modification to synthesize oximes (Ox-Sn-I). We characterized both compounds using IR and NMR spectroscopy and Heteronuclear Multiple Quantum Coherence (HMQC). We investigated vascular relaxation mechanisms in response to Sn-I and Ox-Sn-I using rat aorta and vascular smooth muscle cells (A7r5) as experimental models. Preincubation of aortic rings with Sn-I (10-5 M) significantly (p < 0.001) decreased the contractile effect in response to phenylephrine (PE) and potassium chloride (KCl). The sensitivity (EC50) to PE significantly (p < 0.01) decreased in the presence of Sn-I (10-5 M), but not with Ox-Sn-I. Sn-I significantly (p < 0.001) reduced the PE-induced contraction under calcium-free conditions. When A7r5 cells were preincubated with Sn-I and Ox-Sn-I (10-5 M), both compounds blunted the increase in intracellular Ca2+ induced by KCl. 2,3-Dihydrobenzofurane derived from S. nutans (Sn-I) reduces the contractile response probably by blocking Ca2+ entry through voltage-gated Ca2+ channels (VGCC) in vascular smooth cells. This effect also causes relaxation in rat aorta mediated by reduction of intracellular Ca2+ concentration, rather than an increase of NO generation in endothelial vascular cells.

14.
Gastroenterology ; 142(2): 346-54, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22079595

RESUMEN

BACKGROUND & AIMS: The fluid secretion model predicts that intestinal obstruction disorders can be alleviated by promoting epithelial Cl(-) secretion. The adenosine 3',5'-cyclic monophosphate (cAMP)-activated anion channel CFTR mediates Cl(-)-dependent fluid secretion in the intestine. Although the role of the ClC-2 channel has not been determined in the intestine, this voltage-gated Cl(-) channel might compensate for the secretory defects observed in patients with cystic fibrosis and other chronic constipation disorders. We investigated whether mice that lack ClC-2 channels (Clcn2(-/-)) have defects in intestinal ion transport. METHODS: Immunolocalization and immunoblot analyses were used to determine the cellular localization and the amount of ClC-2 expressed in mouse early distal colon (EDC) and late distal colon (LDC). Colon sheets from wild-type and Clcn2(-/-) littermates were mounted in Ussing chambers to determine transepithelial bioelectrical parameters and Na(+), K(+), and Cl(-) fluxes. RESULTS: Expression of ClC-2 was higher in the basolateral membrane of surface cells in the EDC compared with the LDC, with little expression in crypts. Neither cAMP nor Ca(2+)-induced secretion of Cl(-) was affected in the EDC or LDC of Clcn2(-/-) mice, whereas the amiloride-sensitive short-circuit current was increased approximately 3-fold in Clcn2(-/-) EDC compared with control littermates. Conversely, electroneutral Na(+), K(+), and Cl(-) absorption was dramatically reduced in colons of Clcn2(-/-) mice. CONCLUSIONS: Basolateral ClC-2 channels are required for colonic electroneutral absorption of NaCl and KCl. The increase in the amiloride-sensitive short-circuit current in Clcn2(-/-) mice revealed a compensatory mechanism that is activated in the colons of mice that lack the ClC-2 channel.


Asunto(s)
Canales de Cloruro/metabolismo , Colon/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Animales , Western Blotting , Canales de Cloruro CLC-2 , Cloro/metabolismo , Estreñimiento/metabolismo , Femenino , Transporte Iónico , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Cloruro de Potasio/metabolismo , Cloruro de Sodio/metabolismo
15.
J Ethnopharmacol ; 300: 115747, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152785

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: The plant Senecio nutans SCh. Bip. is used by Andean communities to treat altitude sickness. Recent evidence suggests it may produce vasodilation and negative cardiac inotropy, though the cellular mechanisms have not been elucidated. PURPOSE: To determinate the mechanisms action of S. nutans on cardiovascular function in normotensive animals. METHODS: The effect of the extract on rat blood pressure was measured with a transducer in the carotid artery and intraventricular pressure by a Langendorff system. The effects on sheep ventricular intracellular calcium handling and contractility were evaluated using photometry. Ultra-high-performance liquid-chromatography with diode array detection coupled with heated electrospray-ionization quadrupole-orbitrap mass spectrometric detection (UHPLC-DAD-ESI-Q-OT-MSn) was used for extract chemical characterization. RESULTS: In normotensive rats, S. nutans (10 mg/kg) reduced mean arterial pressure (MAP) by 40% (p < 0.05), causing a dose-dependent coronary artery dilation and decreased left ventricular pressure. In isolated cells, S. nutans extract (1 µg/ml) rapidly reduced the [Ca2+]i transient amplitude and sarcomere shorting by 40 and 49% (p < 0.001), respectively. The amplitude of the caffeine evoked [Ca2+]i transient was reduced by 24% (p < 0.001), indicating reduced sarcoplasmic reticulum (SR) Ca2+ content. Sodium-calcium exchanger (NCX) activity increased by 17% (p < 0.05), while sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) activity was decreased by 21% (p < 0.05). LC-MS results showed the presence of vitamin C, malic acid, and several antioxidant phenolic acids reported for the first time. Dihydroeuparin and 4-hydroxy-3-(3-methylbut-2-enyl) acetophenone were abundant in the extract. CONCLUSION: In normotensive animals, S. nutans partially reduces MAP by decreasing heart rate and cardiac contractility. This negative inotropy is accounted for by decreased SERCA activity and increased NCX activity which reduces SR Ca2+ content. These results highlight the plant's potential as a source of novel cardio-active phytopharmaceuticals or nutraceuticals.


Asunto(s)
Senecio , Acetofenonas/farmacología , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Cafeína/farmacología , Calcio/metabolismo , Contracción Miocárdica , Miocitos Cardíacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/farmacología , Senecio/química , Ovinos , Intercambiador de Sodio-Calcio/farmacología
16.
Pharmaceutics ; 15(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37631286

RESUMEN

Infusions of Valeriana pilosa are commonly used in Peruvian folk medicine for treating gastrointestinal disorders. This study aimed to investigate the spasmolytic and antispasmodic effects of Valeriana pilosa essential oil (VPEO) on rat ileum. The basal tone of ileal sections decreased in response to accumulative concentrations of VPEO. Moreover, ileal sections precontracted with acetylcholine (ACh), potassium chloride (KCl), or barium chloride (BaCl2) were relaxed in response to VPEO by a mechanism that depended on atropine, hyoscine butylbromide, solifenacin, and verapamil, but not glibenclamide. The results showed that VPEO produced a relaxant effect by inhibiting muscarinic receptors and blocking calcium channels, with no apparent effect on the opening of potassium channels. In addition, molecular docking was employed to evaluate VPEO constituents that could inhibit intestinal contractile activity. The study showed that α-cubebene, ß-patchoulene, ß-bourbonene, ß-caryophyllene, α-guaiene, γ-muurolene, valencene, eremophyllene, and δ-cadinene displayed the highest docking scores on muscarinic acetylcholine receptors and voltage-gated calcium channels, which may antagonize M2 and/or M3 muscarinic acetylcholine receptors and block voltage-gated calcium channels. In summary, VPEO has both spasmolytic and antispasmodic effects. It may block muscarinic receptors and calcium channels, thus providing a scientific basis for its traditional use for gastrointestinal disorders.

17.
Dev Biol ; 353(2): 186-93, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21377457

RESUMEN

Expression of the transcription factor, Ascl3, marks a population of adult progenitor cells, which can give rise to both acinar and duct cell types in the murine salivary glands. Using a previously reported Ascl3(EGFP-Cre/+) knock-in strain, we demonstrate that Ascl3-expressing cells represent a molecularly distinct, and proliferating population of progenitor cells located in salivary gland ducts. To investigate both the role of the Ascl3 transcription factor, and the role of the cells in which it is expressed, we generated knockout and cell-specific ablation models. Ascl3 knockout mice develop smaller salivary glands than wild type littermates, but secrete saliva normally. They display a lower level of cell proliferation, consistent with their smaller size. In the absence of Ascl3, the cells maintain their progenitor function and continue to generate both acinar and duct cells. To directly test the role of the progenitor cells, themselves, in salivary gland development and regeneration, we used Cre-activated expression of diphtheria toxin (DTA) in the Ascl3-expressing (Ascl3+) cell population, resulting in specific cell ablation of Ascl3+ cells. In the absence of the Ascl3+ progenitor cells, the mice developed morphologically normal, albeit smaller, salivary glands able to secrete saliva. Furthermore, in a ductal ligation model of salivary gland injury, the glands of these mice were able to regenerate acinar cells. Our results indicate that Ascl3+ cells are active proliferating progenitors, but they are not the only precursors for salivary gland development or regeneration. We conclude that maintenance of tissue homeostasis in the salivary gland must involve more than one progenitor cell population.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/fisiología , Células Madre Adultas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Linaje de la Célula , Proliferación Celular , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Ratones Transgénicos , Tamaño de los Órganos , Regeneración/genética , Regeneración/fisiología , Saliva/metabolismo , Glándulas Salivales/citología
18.
Am J Physiol Gastrointest Liver Physiol ; 303(12): G1365-72, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23086916

RESUMEN

Transient receptor potential vanilloid subtype 4 (TRPV4) is a ligand-gated nonselective cation channel that participates in the transduction of mechanical and osmotic stimuli in different tissues. TRPV4 is activated by endogenous arachidonic acid metabolites, 4α-phorbol-12,13 didecanoate, GSK1016790A, moderate heat, and mechanical stress. TRPV4 is expressed in the salivary glands, but its expression pattern and function are poorly understood. The aim of this study was to evaluate the functional role of TRPV4 channels in the mouse submandibular gland. Using RT-PCR and Western blot analysis, we detected expression of TRPV4 message and protein, respectively, in the submandibular gland. Immunolocalization studies showed that TRPV4 targeted to the basolateral membrane of mouse submandibular gland acinar cells. Pharmacological TRPV4 activation using the selective agonist GSK1016790A caused Ca(2+) influx in isolated acinar cells in a basal-to-apical wave. Consistent with these observations, GSK1016790A elicited salivation in the perfused submandibular gland that was dependent on extracellular Ca(2+). In summary, we report that activation of TRPV4 channels induced Ca(2+) influx and salivation and, thus, may contribute a novel nonadrenergic, noncholinergic secretion pathway in the mouse submandibular gland.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Salivación/fisiología , Glándula Submandibular/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL
19.
Am J Physiol Gastrointest Liver Physiol ; 303(10): G1153-63, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22899825

RESUMEN

A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na(+) and Cl(-). In the second stage, the ducts exchange Na(+) and Cl(-) for K(+) and HCO(3)(-), producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and chemical alterations. In this study, we construct a radially symmetric mathematical model of the mouse salivary gland duct, representing the lumen, the cell, and the interstitium. For a given flow and primary saliva composition, we predict the potential differences and the luminal and cytosolic concentrations along a duct. Our model accounts well for experimental data obtained in wild-type animals as well as knockouts and chemical inhibitors. Additionally, the luminal membrane potential of the duct cells is predicted to be very depolarized compared with acinar cells. We investigate the effects of an electrogenic vs. electroneutral anion exchanger in the luminal membrane on concentration and the potential difference across the luminal membrane as well as how impairing the cystic fibrosis transmembrane conductance regulator channel affects other ion transporting mechanisms. Our model suggests the electrogenicity of the anion exchanger has little effect in the submandibular duct.


Asunto(s)
Electrólitos/metabolismo , Saliva/química , Conductos Salivales/metabolismo , Células Acinares/fisiología , Animales , Bicarbonatos/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Transporte Iónico , Potenciales de la Membrana/fisiología , Ratones , Modelos Biológicos , Potasio/metabolismo , Sodio/metabolismo , Canales de Sodio/efectos de los fármacos
20.
Biology (Basel) ; 11(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892953

RESUMEN

Two pore domain potassium channels (K2P) are strongly expressed in the nervous system (CNS), where they play a central role in excitability. These channels give rise to background K+ currents, also known as IKSO (standing-outward potassium current). We detected the expression in primary cultured cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels by immunocytochemistry and their association with lipid rafts using the specific lipids raft markers flotillin-2 and caveolin-1. At the functional level, methyl-ß-cyclodextrin (MßCD, 5 mM) reduced IKSO currents by ~40% in CGN cells. To dissect out this effect, we heterologously expressed the human TWIK-1, TASK-1, TASK-3, and TRESK channels in HEK-293 cells. MßCD directly blocked TASK-1 and TASK-3 channels and the covalently concatenated heterodimer TASK-1/TASK-3 currents. Conversely, MßCD did not affect TWIK-1- and TRESK-mediated K+ currents. On the other hand, the cholesterol-depleting agent filipin III did not affect TASK-1/TASK-3 channels. Together, the results suggest that neuronal background K+ channels are associated to lipid raft environments whilst the functional activity is independent of the cholesterol membrane organization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA