Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(10): 4098-4123, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479785

RESUMEN

Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Adulto , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/psicología , Imagen de Difusión Tensora , Encéfalo , Cuerpo Calloso/diagnóstico por imagen , Anisotropía
2.
NMR Biomed ; 36(3): e4866, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321360

RESUMEN

Ex vivo diffusion imaging can be used to study healthy and pathological tissue microstructure in the rodent brain with high resolution, providing a link between in vivo MRI and ex vivo microscopy techniques. Major challenges for the successful acquisition of ex vivo diffusion imaging data however are changes in the relaxivity and diffusivity of brain tissue following perfusion fixation. In this study we address this question by examining the combined effects of tissue preparation factors that influence signal-to-noise ratio (SNR) and consequently image quality, including fixative concentration, contrast agent concentration and tissue rehydration time. We present an optimization strategy combining these factors to manipulate the T 1 and T 2 of fixed tissue and maximize SNR efficiency. We apply this strategy in the rat brain, for a diffusion-weighted spin echo protocol with TE = 27 ms on a 9.4 T scanner with a 39 mm volume coil and 660 mT/m 114 mm gradient insert. We used a reduced fixative concentration of 2% paraformaldehyde (PFA), rehydration time more than 20 days, 15 mM Gd-DTPA in perfusate and TR 250 ms. This resulted in a doubling of SNR and an increase in SNR per unit time of 135% in cortical grey matter and 88% in white matter compared with 4% PFA and no contrast agent. This improved SNR efficiency enabled the acquisition of excellent-quality high-resolution (78 µ m isotropic voxel size) diffusion data with b = 4000 s/mm 2 , 30 diffusion directions and a field of view of 40 × 13 × 18 mm3 in less than 4 days. It was also possible to achieve comparable data quality for a standard resolution (150 µ m) diffusion dataset in 2 1 4 h. In conclusion, the tissue optimization strategy presented here may be used to improve SNR, increase spatial resolution and/or allow faster acquisitions in preclinical ex vivo diffusion MRI experiments.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Fijadores , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sustancia Gris
3.
Psychol Med ; 52(11): 2017-2023, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35786785

RESUMEN

BACKGROUND: Offspring exposed to prenatal maternal depression (PMD) are vulnerable to depression across their lifespan. The underlying cause(s) for this elevated intergenerational risk is most likely complex. However, depression is underpinned by a dysfunctional frontal-limbic network, associated with core information processing biases (e.g. attending more to sad stimuli). Aberrations in this network might mediate transmission of this vulnerability in infants exposed to PMD. In this study, we aimed to explore the association between foetal exposure to PMD and frontal-limbic network function in infancy, hypothesising that, in response to emotional sounds, infants exposed to PMD would exhibit atypical activity in these regions, relative to those not exposed to PMD. METHOD: We employed a novel functional magnetic resonance imaging sequence to compare brain function, whilst listening to emotional sounds, in 78 full-term infants (3-6 months of age) born to mothers with and without a diagnosis of PMD. RESULTS: After exclusion of 19 datasets due to infants waking up, or moving excessively, we report between-group brain activity differences, between 29 infants exposed to PMD and 29 infants not exposed to PMD, occurring in temporal, striatal, amygdala/parahippocampal and frontal regions (p < 0.005). The offspring exposed to PMD exhibited a relative increase in activation to sad sounds and reduced (or unchanged) activation to happy sounds in frontal-limbic clusters. CONCLUSIONS: Findings of a differential response to positive and negative valanced sounds by 3-6 months of age may have significant implications for our understanding of neural mechanisms that underpin the increased risk for later-life depression in this population.


Asunto(s)
Depresión , Emociones , Lactante , Embarazo , Femenino , Humanos , Emociones/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen
4.
BMC Psychiatry ; 22(1): 292, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459116

RESUMEN

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is associated with poor educational outcomes that can have long-term negative effects on the mental health, wellbeing, and socio-economic outcomes of university students. Mental health provision for university students with ADHD is often inadequate due to long waiting times for access to diagnosis and treatment in specialist National Health Service (NHS) clinics. ADHD is a hidden and marginalised disability, and within higher education in the UK, the categorisation of ADHD as a specific learning difference (or difficulty) may be contributing to this. AIMS: This consensus aims to provide an informed understanding of the impact of ADHD on the educational (or academic) outcomes of university students and highlight an urgent need for timely access to treatment and management. METHODS: The UK Adult ADHD Network (UKAAN) convened a meeting of practitioners and experts from England, Wales, and Scotland, to discuss issues that university students with ADHD can experience or present with during their programme of studies and how best to address them. A report on the collective analysis, evaluation, and opinions of the expert panel and published literature about the impact of ADHD on the educational outcomes of university students is presented. RESULTS: A consensus was reached that offers expert advice, practical guidance, and recommendations to support the medical, education, and disability practitioners working with university students with ADHD. CONCLUSIONS: Practical advice, guidance, and recommendations based on expert consensus can inform the identification of ADHD in university students, personalised interventions, and educational support, as well as contribute to existing research in this topic area. There is a need to move away from prevailing notions within higher education about ADHD being a specific learning difference (or difficulty) and attend to the urgent need for university students with ADHD to have timely access to treatment and support. A multimodal approach can be adapted to support university students with ADHD. This approach would view timely access to treatment, including reasonable adjustments and educational support, as having a positive impact on the academic performance and achievement of university students with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno por Déficit de Atención con Hiperactividad/terapia , Humanos , Medicina Estatal , Estudiantes/psicología , Reino Unido , Universidades
5.
J Neurosci ; 40(10): 2094-2107, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31949106

RESUMEN

The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.


Asunto(s)
Lóbulo Frontal/anatomía & histología , Vías Nerviosas/anatomía & histología , Sustancia Blanca/anatomía & histología , Animales , Mapeo Encefálico/métodos , Chlorocebus aethiops , Imagen de Difusión Tensora/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca fascicularis , Macaca mulatta , Masculino , Especificidad de la Especie
6.
Brain ; 142(8): 2451-2465, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347684

RESUMEN

A key aspect of cognitive control is the management of conflicting incoming information to achieve a goal, termed 'interference control'. Although the role of the right frontal lobe in interference control is evident, the white matter tracts subserving this cognitive process remain unclear. To investigate this, we studied the effect of transient network disruption (by means of direct electrical stimulation) and permanent disconnection (resulting from neurosurgical resection) on interference control processes, using the Stroop test in the intraoperative and extraoperative neurosurgical setting. We evaluated the sites at which errors could be produced by direct electrical stimulation during an intraoperative Stroop test in 34 patients with frontal right hemisphere glioma. Lesion-symptom mapping was used to evaluate the relationship between the resection cavities and postoperative performance on the Stroop test of this group compared with an additional 29 control patients who did not perform the intraoperative test (63 patients in total aged 17-77 years; 28 female). We then examined tract disruption and disconnection in a subset of eight patients who underwent both the intraoperative Stroop test and high angular resolution diffusion imaging (HARDI) tractography. The results showed that, intraoperatively, the majority of sites associated with errors during Stroop test performance and concurrent subcortical stimulation clustered in a region of white matter medial to the right inferior frontal gyrus, lateral and superior to the striatum. Patients who underwent the intraoperative test maintained cognitive control ability at the 1-month follow-up (P = 0.003). Lesion-symptom analysis showed resection of the right inferior frontal gyrus was associated with slower postoperative Stroop test ability (corrected for multiple comparisons, 5000 permutations). The stimulation sites associated with intraoperative errors most commonly corresponded with the inferior fronto-striatal tracts and anterior thalamic radiation (over 75% of patients), although the latter was commonly resected without postoperative deficits on the Stroop test (in 60% of patients). Our results show converging evidence to support a critical role for the inferior frontal gyrus in interference control processes. The intraoperative data combined with tractography suggests that cortico-subcortical tracts, over cortico-cortical connections, may be vital in maintaining efficiency of cognitive control processes. This suggests the importance of their preservation during resection of right frontal tumours.


Asunto(s)
Neoplasias Encefálicas/cirugía , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Glioma/cirugía , Monitorización Neurofisiológica Intraoperatoria/métodos , Adolescente , Adulto , Anciano , Mapeo Encefálico/métodos , Cognición/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Test de Stroop , Adulto Joven
7.
Cereb Cortex ; 28(7): 2482-2494, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688293

RESUMEN

Humans show a preference for using the right hand over the left for tasks and activities of everyday life. While experimental work in non-human primates has identified the neural systems responsible for reaching and grasping, the neural basis of lateralized motor behavior in humans remains elusive. The advent of diffusion imaging tractography for studying connectional anatomy in the living human brain provides the possibility of understanding the relationship between hemispheric asymmetry, hand preference, and manual specialization. In this study, diffusion tractography was used to demonstrate an interaction between hand preference and the asymmetry of frontoparietal tracts, specifically the dorsal branch of the superior longitudinal fasciculus, responsible for visuospatial integration and motor planning. This is in contrast to the corticospinal tract and the superior cerebellar peduncle, for which asymmetry was not related to hand preference. Asymmetry of the dorsal frontoparietal tract was also highly correlated with the degree of lateralization in tasks requiring visuospatial integration and fine motor control. These results suggest a common anatomical substrate for hand preference and lateralized manual specialization in frontoparietal tracts important for visuomotor processing.


Asunto(s)
Lóbulo Frontal/fisiología , Lateralidad Funcional/fisiología , Mano/fisiología , Destreza Motora/fisiología , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Lóbulo Frontal/diagnóstico por imagen , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pedúnculo Cerebeloso Medio/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Tractos Piramidales/diagnóstico por imagen , Interfaz Usuario-Computador , Adulto Joven
8.
Neuroimage ; 146: 367-375, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27639357

RESUMEN

Experimental data on monkeys and functional studies in humans support the existence of a complex fronto-parietal system activating for cognitive and motor tasks, which may be anatomically supported by the superior longitudinal fasciculus (SLF). Advanced tractography methods have recently allowed the separation of the three branches of the SLF but are not suitable for their functional investigation. In order to gather comprehensive information about the functional organisation of these fronto-parietal connections, we used an innovative method, which combined tractography of the SLF in the largest dataset so far (129 participants) with 14 meta-analyses of functional magnetic resonance imaging (fMRI) studies. We found that frontal and parietal functions can be clustered into a dorsal spatial/motor network associated with the SLF I, and a ventral non-spatial/motor network associated with the SLF III. Further, all the investigated functions activated a middle network mostly associated with the SLF II. Our findings suggest that dorsal and ventral fronto-parietal networks are segregated but also share regions of activation, which may support flexible response properties or conscious processing. In sum, our novel combined approach provided novel findings on the functional organisation of fronto-parietal networks, and may be successfully applied to other brain connections.


Asunto(s)
Mapeo Encefálico , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología , Adolescente , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adulto Joven
9.
Brain ; 139(Pt 2): 616-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26912520

RESUMEN

It has been postulated that autism spectrum disorder is underpinned by an 'atypical connectivity' involving higher-order association brain regions. To test this hypothesis in a large cohort of adults with autism spectrum disorder we compared the white matter networks of 61 adult males with autism spectrum disorder and 61 neurotypical controls, using two complementary approaches to diffusion tensor magnetic resonance imaging. First, we applied tract-based spatial statistics, a 'whole brain' non-hypothesis driven method, to identify differences in white matter networks in adults with autism spectrum disorder. Following this we used a tract-specific analysis, based on tractography, to carry out a more detailed analysis of individual tracts identified by tract-based spatial statistics. Finally, within the autism spectrum disorder group, we studied the relationship between diffusion measures and autistic symptom severity. Tract-based spatial statistics revealed that autism spectrum disorder was associated with significantly reduced fractional anisotropy in regions that included frontal lobe pathways. Tractography analysis of these specific pathways showed increased mean and perpendicular diffusivity, and reduced number of streamlines in the anterior and long segments of the arcuate fasciculus, cingulum and uncinate--predominantly in the left hemisphere. Abnormalities were also evident in the anterior portions of the corpus callosum connecting left and right frontal lobes. The degree of microstructural alteration of the arcuate and uncinate fasciculi was associated with severity of symptoms in language and social reciprocity in childhood. Our results indicated that autism spectrum disorder is a developmental condition associated with abnormal connectivity of the frontal lobes. Furthermore our findings showed that male adults with autism spectrum disorder have regional differences in brain anatomy, which correlate with specific aspects of autistic symptoms. Overall these results suggest that autism spectrum disorder is a condition linked to aberrant developmental trajectories of the frontal networks that persist in adult life.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/metabolismo , Lóbulo Frontal/metabolismo , Red Nerviosa/metabolismo , Sustancia Blanca/metabolismo , Adolescente , Adulto , Estudios Transversales , Imagen de Difusión Tensora/métodos , Lóbulo Frontal/patología , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Sustancia Blanca/patología , Adulto Joven
10.
Minim Invasive Ther Allied Technol ; 26(4): 249-252, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28145160

RESUMEN

The advent of new energy sources for hemostasis has greatly facilitated advanced laparoscopic procedures. We describe a straightforward technique of laparoscopic splenectomy (LS) accomplished using the THUNDERBEAT™ system (TS) (Olympus Medical Systems Corp., Tokyo, Japan) as the sole means of tissue dissection and hemostasis in two patients aged 19 and 6 years, respectively. The specimens were removed intact via a Pfannenstiel incision. Total operative time was 165 and 150 min, and length of hospital stay was three and 4 d, respectively. The TS is an appealing and reliable alternative to currently available energy devices, allowing fast dissection and secure hemostasis during laparoscopic splenectomy.


Asunto(s)
Disección/instrumentación , Hemostasis Quirúrgica/instrumentación , Laparoscopía/instrumentación , Esplenectomía/instrumentación , Pérdida de Sangre Quirúrgica/prevención & control , Niño , Disección/métodos , Humanos , Laparoscopía/métodos , Tempo Operativo , Esplenectomía/métodos , Adulto Joven
11.
J Neurosci ; 35(37): 12625-34, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377454

RESUMEN

Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9-40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. SIGNIFICANCE STATEMENT: Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiología , Interacción Gen-Ambiente , Desarrollo del Lenguaje , Red Nerviosa/fisiología , Adolescente , Adulto , Axones/ultraestructura , Área de Broca/fisiología , Corteza Cerebral/ultraestructura , Niño , Imagen de Difusión Tensora , Dominancia Cerebral/fisiología , Femenino , Humanos , Masculino , Modelos Neurológicos , Tamaño de los Órganos , Carácter Cuantitativo Heredable , Gemelos Dicigóticos , Gemelos Monocigóticos , Área de Wernicke/fisiología , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 110(32): 13168-73, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23884655

RESUMEN

Human language requires constant learning of new words, leading to the acquisition of an average vocabulary of more than 30,000 words in adult life. The ability to learn new words is highly variable and may rely on the integration between auditory and motor information. Here, we combined diffusion imaging tractography and functional MRI to study whether the strength of anatomical and functional connectivity between auditory and motor language networks is associated with word learning ability. Our results showed that performance in word learning correlates with microstructural properties and strength of functional connectivity of the direct connections between Broca's and Wernicke's territories in the left hemisphere. This study suggests that our ability to learn new words relies on an efficient and fast communication between temporal and frontal areas. The absence of these connections in other animals may explain the unique ability of learning words in humans.


Asunto(s)
Encéfalo/fisiología , Lateralidad Funcional/fisiología , Aprendizaje Verbal/fisiología , Vocabulario , Adulto , Encéfalo/anatomía & histología , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Humanos , Lenguaje , Imagen por Resonancia Magnética , Masculino , Desempeño Psicomotor/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiología , Adulto Joven
13.
J Psychiatry Neurosci ; 40(2): 100-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25338016

RESUMEN

BACKGROUND: Neuroimaging studies of ultra-high risk (UHR) and first-episode psychosis (FEP) have revealed widespread alterations in brain structure and function. Recent evidence suggests there is an intrinsic relationship between these 2 types of alterations; however, there is very little research linking these 2 modalities in the early stages of psychosis. METHODS: To test the hypothesis that functional alteration in UHR and FEP articipants would be associated with corresponding structural alteration, we examined brain function and structure in these participants as well as in a group of healthy controls using multimodal MRI. The data were analyzed using statistical parametric mapping. RESULTS: We included 24 participants in the FEP group, 18 in the UHR group and 21 in the control group. Patients in the FEP group showed a reduction in functional activation in the left superior temporal gyrus relative to controls, and the UHR group showed intermediate values. The same region showed a corresponding reduction in grey matter volume in the FEP group relative to controls. However, while the difference in grey matter volume remained significant after including functional activation as a covariate of no interest, the reduction in functional activation was no longer evident after including grey matter volume as a covariate of no interest. LIMITATIONS: Our sample size was relatively small. All participants in the FEP group and 2 in the UHR group had received antipsychotic medication, which may have impacted neurofunction and/or neuroanatomy. CONCLUSION: Our results suggest that superior temporal dysfunction in early psychosis is accounted for by a corresponding alteration in grey matter volume. This finding has important implications for the interpretation of functional alteration in early psychosis.


Asunto(s)
Trastornos Psicóticos/patología , Trastornos Psicóticos/fisiopatología , Lóbulo Temporal/patología , Lóbulo Temporal/fisiopatología , Adolescente , Adulto , Percepción Auditiva/fisiología , Femenino , Sustancia Gris/efectos de los fármacos , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Pruebas Neuropsicológicas , Tamaño de los Órganos , Patrones de Reconocimiento Fisiológico/fisiología , Escalas de Valoración Psiquiátrica , Trastornos Psicóticos/tratamiento farmacológico , Lóbulo Temporal/efectos de los fármacos , Adulto Joven
15.
Brain ; 137(Pt 2): 621-33, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23687118

RESUMEN

Neuroimaging techniques, such as positron emission tomography and functional magnetic resonance imaging are essential tools for the analysis of organized neural systems in working and resting states, both in physiological and pathological conditions. They provide evidence of coupled metabolic and cerebral local blood flow changes that strictly depend upon cellular activity. In 1890, Charles Smart Roy and Charles Scott Sherrington suggested a link between brain circulation and metabolism. In the same year William James, in his introduction of the concept of brain blood flow variations during mental activities, briefly reported the studies of the Italian physiologist Angelo Mosso, a multifaceted researcher interested in the human circulatory system. James focused on Mosso's recordings of brain pulsations in patients with skull breaches, and in the process only briefly referred to another invention of Mosso's, the 'human circulation balance', which could non-invasively measure the redistribution of blood during emotional and intellectual activity. However, the details and precise workings of this instrument and the experiments Mosso performed with it have remained largely unknown. Having found Mosso's original manuscripts in the archives, we remind the scientific community of his experiments with the 'human circulation balance' and of his establishment of the conceptual basis of non-invasive functional neuroimaging techniques. Mosso unearthed and investigated several critical variables that are still relevant in modern neuroimaging such as the 'signal-to-noise ratio', the appropriate choice of the experimental paradigm and the need for the simultaneous recording of differing physiological parameters.


Asunto(s)
Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Neurofisiología/historia , Obras Médicas de Referencia , Encéfalo/irrigación sanguínea , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Imagen por Resonancia Magnética/historia , Imagen por Resonancia Magnética/métodos , Neuroimagen/historia , Neuroimagen/métodos , Neurofisiología/métodos
16.
Brain ; 137(Pt 7): 2027-39, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24951631

RESUMEN

Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke's to Broca's region (i.e. long segment), Wernicke's to Geschwind's region (i.e. posterior segment) and Broca's to Geschwind's region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28-87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = -0.630, t(-3.129), P = 0.011]. For the right hemisphere, age [beta = -0.678, t(-3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.


Asunto(s)
Afasia/patología , Encéfalo/patología , Lenguaje , Recuperación de la Función/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Afasia/etiología , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones
17.
Brain ; 136(Pt 8): 2619-28, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23820597

RESUMEN

The frontal aslant tract is a direct pathway connecting Broca's region with the anterior cingulate and pre-supplementary motor area. This tract is left lateralized in right-handed subjects, suggesting a possible role in language. However, there are no previous studies that have reported an involvement of this tract in language disorders. In this study we used diffusion tractography to define the anatomy of the frontal aslant tract in relation to verbal fluency and grammar impairment in primary progressive aphasia. Thirty-five patients with primary progressive aphasia and 29 control subjects were recruited. Tractography was used to obtain indirect indices of microstructural organization of the frontal aslant tract. In addition, tractography analysis of the uncinate fasciculus, a tract associated with semantic processing deficits, was performed. Damage to the frontal aslant tract correlated with performance in verbal fluency as assessed by the Cinderella story test. Conversely, damage to the uncinate fasciculus correlated with deficits in semantic processing as assessed by the Peabody Picture Vocabulary Test. Neither tract correlated with grammatical or repetition deficits. Significant group differences were found in the frontal aslant tract of patients with the non-fluent/agrammatic variant and in the uncinate fasciculus of patients with the semantic variant. These findings indicate that degeneration of the frontal aslant tract underlies verbal fluency deficits in primary progressive aphasia and further confirm the role of the uncinate fasciculus in semantic processing. The lack of correlation between damage to the frontal aslant tract and grammar deficits suggests that verbal fluency and grammar processing rely on distinct anatomical networks.


Asunto(s)
Afasia de Broca/fisiopatología , Afasia Progresiva Primaria/fisiopatología , Lóbulo Frontal/fisiopatología , Lenguaje , Red Nerviosa/fisiopatología , Habla/fisiología , Anciano , Afasia de Broca/complicaciones , Afasia Progresiva Primaria/complicaciones , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas
18.
Surg Radiol Anat ; 36(1): 85-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23673391

RESUMEN

PURPOSE: The sigmoidorectal junction (SRJ) has been defined as an anatomical sphincter with particular physiological behavior that regulates sigmoid and rectum evacuation. Its function in clinical conditions, such as diverticular disease has been advocated. The aim of our study is to identify the SRJ and to compare the morphometric and dynamic features of the SRJ between patients with diverticular disease and healthy subjects using MR-defecography. METHODS: Sixteen individuals, eight with uncomplicated diverticular disease and eight healthy subjects, were studied using MR-defecography to identify the SRJ and to compare the morphometric and dynamic features observed. RESULTS: In each subject studied, MR-defecography was able to identify the SRJ. This resulted in the identification of a discrete anatomical entity with a mean length of 31.23 mm, located in front of the first sacral vertebra (S1) and at a mean distance of 15.55 cm from the anal verge, with a mean wall thickness of 4.45 mm, significantly different from the sigmoid and rectal parietal thickness. The SRJ wall was significantly thicker in patients with diverticular disease than the controls (P = 0.005), showing a unique shape and behavior in dynamic sequences. CONCLUSION: Our findings support the hypothesis that SRJ plays a critical role in patients with symptomatic diverticular disease; further investigation may clarify whether specific SRJ analysis, such as MR-defecography, would predict inflammatory complications of this diffuse and heterogenic disease.


Asunto(s)
Colon Sigmoide/diagnóstico por imagen , Diverticulosis del Colon/diagnóstico por imagen , Recto/diagnóstico por imagen , Anciano , Estudios de Casos y Controles , Colon Sigmoide/fisiopatología , Defecografía/métodos , Diverticulosis del Colon/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Recto/fisiopatología
19.
Brain Commun ; 6(5): fcae261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239149

RESUMEN

Control of the hand muscles during fine digit movements requires a high level of sensorimotor integration, which relies on a complex network of cortical and subcortical hubs. The components of this network have been extensively studied in human and non-human primates, but discrepancies in the findings obtained from different mapping approaches are difficult to interpret. In this study, we defined the cortical and connectional components of the hand motor network in the same cohort of 20 healthy adults and 3 neurosurgical patients. We used multimodal structural magnetic resonance imaging (including T1-weighted imaging and diffusion tractography), as well as functional magnetic resonance imaging and navigated transcranial magnetic stimulation (nTMS). The motor map obtained from nTMS compared favourably with the one obtained from functional magnetic resonance imaging, both of which overlapped well within the 'hand-knob' region of the precentral gyrus and in an adjacent region of the postcentral gyrus. nTMS stimulation of the precentral and postcentral gyri led to motor-evoked potentials in the hand muscles in all participants, with more responses recorded from precentral stimulations. We also observed that precentral stimulations tended to produce motor-evoked potentials with shorter latencies and higher amplitudes than postcentral stimulations. Tractography showed that the region of maximum overlap between terminations of precentral-postcentral U-shaped association fibres and somatosensory projection tracts colocalizes with the functional motor maps. The relationships between the functional maps, and between them and the tract terminations, were replicated in the patient cohort. Three main conclusions can be drawn from our study. First, the hand-knob region is a reliable anatomical landmark for the functional localization of fine digit movements. Second, its distinctive shape is determined by the convergence of highly myelinated long projection fibres and short U-fibres. Third, the unique role of the hand-knob area is explained by its direct action on the spinal motoneurons and the access to high-order somatosensory information for the online control of fine movements. This network is more developed in the hand region compared to other body parts of the homunculus motor strip, and it may represent an important target for enhancing motor learning during early development.

20.
Neuroimage ; 80: 2-13, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23735262

RESUMEN

Connectome is a term with a short history but a long past. Since the origins of neuroscience the concept of a 'map of neural connections' has been a constant inspiring idea for those who believed the brain as the organ of intellect. A myriad of proto-connectome maps have been produced throughout the centuries, each one reflecting the theory and method of investigation that prevailed at the time. Even contemporary definitions of the connectome rest upon the formulation of a neuronal theory that has been proposed over a hundred years ago. So, what is new? In this article we attempt to trace the development of certain anatomical and physiological concepts at the origins of modern definitions of the connectome. We argue that compared to previous attempts current connectomic approaches benefit from a wealth of imaging methods that in part could justify the enthusiasm for finally succeeding in achieving the goal. One of the unique advantages of contemporary approaches is the possibility of using quantitative methods to define measures of connectivity where structure, function and behaviour are integrated and correlated. We also argue that many contemporary maps are inaccurate surrogates of the true anatomy and a comprehensive connectome of the human brain remains a far distant point in the history to come.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Microscopía/métodos , Modelos Anatómicos , Modelos Neurológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA