Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Exp Cell Res ; 417(1): 113162, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460679

RESUMEN

The endoplasmic reticulum (ER) presents unique properties to establishing bacterium symbiosis in eukaryotic cells since it synthesizes and glycosylates essential molecules like proteins and lipids. Tunicamycin (TM) is an antibiotic that inhibits the first step in the N-linked glycosylation in eukaryotes and has been used as an ER stress inducer to activate the Unfolded Protein Response (UPR). Mutualistic symbiosis in trypanosomatids is characterized by structural adaptations and intense metabolic exchanges, thus we investigated the effects of TM in the association between Angomonas deanei and its symbiotic bacterium, through ultrastructural and proteomic approaches. Cells treated with the inhibitor showed a decrease in proliferation, enlargement of the ER and Golgi cisternae and an increased distance between the symbiont and the ER. TM proved to be an important tool to better understand ER stress in trypanosomatids, since changes in protein composition were observed in the host protozoan, especially the expression of the Hsp90 chaperone. Furthermore, data obtained indicates the importance of the ER for the adaptation and maintenance of symbiotic associations between prokaryotes and eukaryotes, considering that this organelle has recognized importance in the biogenesis and division of cell structures.


Asunto(s)
Proteínas de Choque Térmico , Trypanosomatina , Bacterias , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Proteómica , Trypanosomatina/metabolismo , Trypanosomatina/microbiología , Tunicamicina/farmacología
2.
PLoS Pathog ; 16(10): e1008494, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091070

RESUMEN

The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division.


Asunto(s)
Citoesqueleto/metabolismo , Flagelos/fisiología , Interacciones Huésped-Parásitos , Leishmania/crecimiento & desarrollo , Leishmaniasis/parasitología , Morfogénesis , Psychodidae/parasitología , Animales , Membrana Celular , Citocinesis , Femenino , Flagelos/ultraestructura , Leishmania/ultraestructura , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(13): 6351-6360, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850532

RESUMEN

Leishmania kinetoplastid parasites infect millions of people worldwide and have a distinct cellular architecture depending on location in the host or vector and specific pathogenicity functions. An invagination of the cell body membrane at the base of the flagellum, the flagellar pocket (FP), is an iconic kinetoplastid feature, and is central to processes that are critical for Leishmania pathogenicity. The Leishmania FP has a bulbous region posterior to the FP collar and a distal neck region where the FP membrane surrounds the flagellum more closely. The flagellum is attached to one side of the FP neck by the short flagellum attachment zone (FAZ). We addressed whether targeting the FAZ affects FP shape and its function as a platform for host-parasite interactions. Deletion of the FAZ protein, FAZ5, clearly altered FP architecture and had a modest effect in endocytosis but did not compromise cell proliferation in culture. However, FAZ5 deletion had a dramatic impact in vivo: Mutants were unable to develop late-stage infections in sand flies, and parasite burdens in mice were reduced by >97%. Our work demonstrates the importance of the FAZ for FP function and architecture. Moreover, we show that deletion of a single FAZ protein can have a large impact on parasite development and pathogenicity.


Asunto(s)
Cilios/fisiología , Flagelos/fisiología , Leishmania/fisiología , Leishmania/patogenicidad , Psychodidae/parasitología , Animales , Membrana Celular/metabolismo , Cilios/genética , Cilios/ultraestructura , Endocitosis , Flagelos/genética , Flagelos/ultraestructura , Eliminación de Gen , Interacciones Huésped-Parásitos , Uniones Intercelulares , Leishmania/genética , Leishmania/ultraestructura , Ratones , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Virulencia/genética
4.
J Eukaryot Microbiol ; 63(6): 794-803, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27194398

RESUMEN

In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.


Asunto(s)
Bacterias/citología , Proteínas Protozoarias/genética , Simbiosis , Trypanosomatina/microbiología , Bacterias/genética , División Celular , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestructura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Microsc Microanal ; 20(1): 228-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24397934

RESUMEN

Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.


Asunto(s)
Simbiosis/fisiología , Trypanosomatina/microbiología , Trypanosomatina/fisiología , Bacterias , Ciclo Celular/fisiología , División Celular/fisiología , ADN Protozoario/análisis , ADN Protozoario/química , Microscopía Fluorescente , Orgánulos/química , Orgánulos/microbiología , Trypanosomatina/química , Trypanosomatina/citología
6.
Nat Commun ; 14(1): 7159, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935664

RESUMEN

Whole genome analysis of Leishmania hybrids generated experimentally in sand flies supports a meiotic mechanism of genetic exchange, with Mendelian segregation of the nuclear genome. Here, we perform functional analyses through the generation of double drug-resistant hybrids in vitro and in vivo (during sand fly infections) to assess the importance of conserved meiosis-related genes in recombination and plasmogamy. We report that HOP1 and a HAP2-paralog (HAP2-2) are essential components of the Leishmania meiosis machinery and cell-to-cell fusion mechanism, respectively, since deletion of either gene in one or both parents significantly reduces or completely abrogates mating competence. These findings significantly advance our understanding of sexual reproduction in Leishmania, with likely relevance to other trypanosomatids, by formally demonstrating the involvement of a meiotic protein homolog and a distinct fusogen that mediates non-canonical, bilateral fusion in the hybridizing cells.


Asunto(s)
Leishmania , Psychodidae , Animales , Leishmania/genética , Reproducción/genética , Meiosis/genética
7.
Cells ; 12(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672221

RESUMEN

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

8.
Wellcome Open Res ; 7: 294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874584

RESUMEN

We present the genome sequence of Leishmania mexicana MNYC/BZ/62/M379 modified to express Cas9 and T7 RNA-polymerase, revealing high similarity to the reference genome (MHOM/GT2001/U1103). Through RNAseq-based annotation of coding sequences and untranslated regions, we provide primer sequences for construct and sgRNA template generation for CRISPR-assisted gene deletion and endogenous tagging.

9.
Sci Rep ; 11(1): 9210, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911164

RESUMEN

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Asunto(s)
Bacterias/metabolismo , Replicación del ADN , ADN de Cinetoplasto/genética , ADN Protozoario/genética , Mitocondrias/genética , Proteínas Protozoarias/genética , Trypanosomatina/genética , División Celular , Núcleo Celular , ADN de Cinetoplasto/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Protozoario/metabolismo , Mitocondrias/metabolismo , Proteínas Protozoarias/metabolismo , Simbiosis , Trypanosomatina/metabolismo , Trypanosomatina/microbiología
10.
Protist ; 168(2): 253-269, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28371652

RESUMEN

The mutualistic relationship between trypanosomatids and their respective endosymbiotic bacteria represents an excellent model for studying metabolic co-evolution since the symbiont completes essential biosynthetic routes of the host cell. In this work, we investigated the influence of the endosymbiont on the energy metabolism of Strigomonas culicis by comparing the wild strain with aposymbiotic protists. The bacterium maintains a frequent and close association with glycosomes, which are distributed around the prokaryote. Furthermore, 3D reconstructions revealed that the shape and distribution of glycosomes are different in symbiont-bearing protists compared to symbiont-free cells. Results of bioenergetic assays showed that the presence of the symbiont enhances the O2 consumption of the host cell. When the quantity of intracellular or released glycerol was evaluated, the aposymbiotic strain presented higher values when compared to symbiont-containing cells. Furthermore, inhibition of oxidative phosphorylation by potassium cyanide increased the rate of glycerol release and slightly diminished the ATP content in cells without the symbiont, indicating that the host trypanosomatid enhances its fermentative activity when the bacterium is lost.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Simbiosis , Trypanosomatina/microbiología , Metabolismo Energético
11.
PLoS One ; 8(4): e60209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560078

RESUMEN

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.


Asunto(s)
Genes Protozoarios , Filogenia , Proteínas Protozoarias/genética , Simbiosis/genética , Trypanosomatina/genética , Bacterias/metabolismo , Composición de Base , Secuencia de Bases , Evolución Biológica , Leishmania major/genética , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Trypanosomatina/clasificación , Trypanosomatina/metabolismo , Trypanosomatina/microbiología
12.
PLoS One ; 5(8): e12415, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20865129

RESUMEN

In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.


Asunto(s)
Bacterias/citología , División Celular , Núcleo Celular/microbiología , Crithidia/citología , Crithidia/microbiología , Simbiosis , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Crithidia/fisiología , Replicación del ADN
13.
PLos ONE ; 5(8): 1-9, Aug 26, 2010.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP, SESSP-IBACERVO | ID: biblio-1065090

RESUMEN

In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process ismore complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.


Asunto(s)
Células Eucariotas/metabolismo , Células Eucariotas/microbiología , Células Eucariotas/ultraestructura , Orgánulos/clasificación , Orgánulos/metabolismo , Orgánulos/microbiología , Orgánulos/ultraestructura , Crithidia/clasificación , Crithidia/microbiología , Microscopía Electrónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA