Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396757

RESUMEN

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Asunto(s)
Glioblastoma , Transportador de Glucosa de Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipoxia de la Célula/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipoxia , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo
2.
Mol Cancer ; 22(1): 138, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596643

RESUMEN

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
J Pharmacol Exp Ther ; 384(1): 1-9, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35667689

RESUMEN

Argonautes (AGOs) are a highly conserved family of proteins found in most eukaryotes and involved in mechanisms of gene regulation, both at the transcriptional and post-transcriptional level. Among other functions, AGO proteins associate with microRNAs (miRNAs) to mediate the post-transcriptional repression of protein-coding genes. In this process, AGOs associate with members of the trinucleotide repeat containing 6 protein (TNRC6) family to form the core of the RNA-induced silencing complex (RISC), the effector machinery that mediates miRNA function. However, the description of the exact composition of the RISC has been a challenging task due to the fact the AGO's interactome is dynamically regulated in a cell type- and condition-specific manner. Here, we summarize some of the most significant studies that have identified AGO complexes in mammalian cells, as well as the approaches used to characterize them. Finally, we discuss possible opportunities to exploit what we have learned on the properties of the RISC to develop novel anti-cancer therapies. SIGNIFICANCE STATEMENT: The RNA-induced silencing complex (RISC) is the molecular machinery that mediates miRNA function in mammals. Studies over the past two decades have shed light on important biochemical and functional properties of this complex. However, many aspects of this complex await further elucidation, mostly due to technical limitations that have hindered full characterization. Here, we summarize some of the most significant studies on the mammalian RISC and discuss possible sources of biases in the approaches used to characterize it.


Asunto(s)
Proteínas Argonautas , MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
4.
Phytopathology ; 113(9): 1647-1660, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36945728

RESUMEN

Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Olea , Xylella , Animales , Enfermedades de las Plantas/prevención & control , Italia , Europa (Continente)
5.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37685998

RESUMEN

Conditioned media harvested from stem cell culturing have the potential to be innovative therapeutic tools against various diseases, due to their high content of growth, trophic and protective factors. The evaluation in vivo of the effects and biosafety of these products is essential, and zebrafish provides an ideal platform for high-throughput toxicological analysis, concurrently allowing the minimization of the use of mammalian models without losing reliability. In this study, we assessed the biological effects elicited by the exposure of zebrafish embryos to a conditioned medium derived from Wharton's jelly mesenchymal stem cells. By a multiparametric investigation combining molecular, embryological, behavioural and in vivo imaging techniques, we found that exposure to a conditioned medium at a non-toxic/non-lethal dosage triggers antioxidant, anti-apoptotic and pro-regenerative effects, by upregulation of a set of genes involved in antioxidant defence (nrf2, brg1, sirt1, sirt6, foxO3a, sod2 and cat), glycolysis (ldha) and cell survival (bcl2l1, mcl1a and bim), coupled to downregulation of pro-apoptotic markers (baxa, caspase-3a and caspase-8). To our knowledge, this is the first study comprehensively addressing the effects of a conditioned medium on a whole organism from a developmental, molecular and behavioural perspective, and we are fairly confident that it will pave the way for future therapeutic application.


Asunto(s)
Antioxidantes , Gelatina de Wharton , Animales , Antioxidantes/farmacología , Medios de Cultivo Condicionados/farmacología , Reproducibilidad de los Resultados , Pez Cebra , Mamíferos
6.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445758

RESUMEN

Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos' and larvae's exposure to radiotherapy treatments.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Radioterapia/efectos adversos , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/efectos de la radiación , Modelos Animales
7.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545267

RESUMEN

G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.


Asunto(s)
Cromatina/genética , Epigénesis Genética , G-Cuádruplex , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , ARN no Traducido/química , ARN no Traducido/genética
8.
Biochemistry ; 57(30): 4391-4394, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30011196

RESUMEN

The G-quadruplex (G4) is a four-stranded DNA structure identified in vivo in guanine-rich regions located in the promoter of a number of genes. Intriguing evidence suggested that small molecules acting as G4-targeting ligands could potentially regulate multiple cellular processes via either stabilizing or disruptive effects on G4 motifs. Research in this field aims to prove the direct role of G4 ligands and/or structures on a specific biological process in a complex living organism. In this study, we evaluate in vivo the effects of a nickel(II)-salnaphen-like complex, named Nisaln, a potent G4 binder and stabilizer, during embryogenesis of the sea urchin embryo. We describe developmental defects inflicted by Nisaln and correlate them with variation in the expression of several regulatory genes. It is worth mentioning that we show that Nisaln binds a G4 structure in the promoter of hbox12-a, a gene lying at the top of the developmental regulatory hierarchy, inducing overexpression of this gene.


Asunto(s)
Complejos de Coordinación/efectos adversos , G-Cuádruplex/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Níquel/efectos adversos , Erizos de Mar/efectos de los fármacos , Erizos de Mar/embriología , Animales , Complejos de Coordinación/química , ADN/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Ligandos , Níquel/química , Regiones Promotoras Genéticas/efectos de los fármacos , Erizos de Mar/genética
9.
PLoS Genet ; 11(8): e1005444, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26292210

RESUMEN

In order to study the role played by cellular RNA pools produced by homologous genomic loci in defining the transcriptional state of a silenced gene, we tested the effect of non-functional alleles of the white gene in the presence of a functional copy of white, silenced by heterochromatin. We found that non-functional alleles of white, unable to produce a coding transcript, could reactivate in trans the expression of a wild type copy of the same gene silenced by heterochromatin. This new epigenetic phenomenon of transcriptional trans-reactivation is heritable, relies on the presence of homologous RNA's and is affected by mutations in genes involved in post-transcriptional gene silencing. Our data suggest a general new unexpected level of gene expression control mediated by homologous RNA molecules in the context of heterochromatic genes.


Asunto(s)
Interferencia de ARN , Transcripción Genética , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Animales , Ojo Compuesto de los Artrópodos/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Color del Ojo/genética , Proteínas del Ojo/genética , Femenino , Genes de Insecto , Heterocromatina/genética , Masculino , ARN no Traducido/genética
10.
J Cell Physiol ; 232(7): 1845-1861, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27925208

RESUMEN

Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Comunicación Autocrina , Movimiento Celular , Espacio Extracelular/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Transducción de Señal , Animales , Células Endoteliales , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Modelos Biológicos , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo
11.
PLoS Genet ; 9(9): e1003847, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086165

RESUMEN

Chromatin insulators are eukaryotic genome elements that upon binding of specific proteins display barrier and/or enhancer-blocking activity. Although several insulators have been described throughout various metazoans, much less is known about proteins that mediate their functions. This article deals with the identification and functional characterization in Paracentrotus lividus of COMPASS-like (CMPl), a novel echinoderm insulator binding protein. Phylogenetic analysis shows that the CMPl factor, encoded by the alternative spliced Cmp/Cmpl transcript, is the founder of a novel ambulacrarian-specific family of Homeodomain proteins containing the Compass domain. Specific association of CMPl with the boxB cis-element of the sns5 chromatin insulator is demonstrated by using a yeast one-hybrid system, and further corroborated by ChIP-qPCR and trans-activation assays in developing sea urchin embryos. The sns5 insulator lies within the early histone gene cluster, basically between the H2A enhancer and H1 promoter. To assess the functional role of CMPl within this locus, we challenged the activity of CMPl by two distinct experimental strategies. First we expressed in the developing embryo a chimeric protein, containing the DNA-binding domain of CMPl, which efficiently compete with the endogenous CMPl for the binding to the boxB sequence. Second, to titrate the embryonic CMPl protein, we microinjected an affinity-purified CMPl antibody. In both the experimental assays we congruently observed the loss of the enhancer-blocking function of sns5, as indicated by the specific increase of the H1 expression level. Furthermore, microinjection of the CMPl antiserum in combination with a synthetic mRNA encoding a forced repressor of the H2A enhancer-bound MBF1 factor restores the normal H1 mRNA abundance. Altogether, these results strongly support the conclusion that the recruitment of CMPl on sns5 is required for buffering the H1 promoter from the H2A enhancer activity, and this, in turn, accounts for the different level of accumulation of early linker and nucleosomal transcripts.


Asunto(s)
Cromatina/genética , Elementos Aisladores/genética , Nucleoproteínas/metabolismo , Nucleosomas/genética , Paracentrotus/genética , Erizos de Mar/crecimiento & desarrollo , Animales , Proteínas Portadoras/genética , Embrión no Mamífero , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Nucleoproteínas/genética , Paracentrotus/crecimiento & desarrollo , Filogenia , Regiones Promotoras Genéticas , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Erizos de Mar/genética
12.
Development ; 138(19): 4279-90, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21896632

RESUMEN

In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.


Asunto(s)
Proteínas Portadoras/fisiología , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Animales , Blastómeros/citología , Desarrollo Óseo , Huesos/embriología , Proteínas Portadoras/genética , Movimiento Celular , ADN Complementario/metabolismo , Ectodermo/metabolismo , Ligandos , Mesodermo/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Erizos de Mar , Homología de Secuencia de Aminoácido
13.
Zebrafish ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963004

RESUMEN

The 4th Italian Zebrafish Meeting took place in Palermo from February 7 to 9, 2024. The primary aim of this meeting was to bring together a diverse group of principal investigators, young researchers, facility managers, commercial vendors, and others to provide an important forum for presentation and discussion of the most innovative and exciting scientific research currently ongoing in Italy using the zebrafish model. Nonetheless, the meeting program has been conceived to allow the dissemination of cutting-edge scientific research across a wide range of topics and to shed light on its future directions, without geographical boundaries. Indeed, people from various parts of the world joined the meeting, and 210 participants presented their latest work in talks and posters. Importantly, the meeting had designated time to foster open scientific exchange and informal networking opportunities among participants of all career stages, thus allowing initiation of new collaborations and strengthening of existing partnerships. The meeting was a tremendous success as testified by the highest participation ever since the first meeting of the series in 2017, coupled with the highly positive satisfaction rating expressed by the attendants. The full program and detailed information about the meeting can be found on the dedicated website at https://itazebrafishmeeting.wixsite.com/izm2024.

14.
Sci Rep ; 14(1): 8137, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584175

RESUMEN

The design and implementation of Philaenus spumarius control strategies can take advantage of properly calibrated models describing and predicting the phenology of vector populations in agroecosystems. We developed a temperature-driven physiological-based model based on the system of Kolmogorov partial differential equations to predict the phenological dynamics of P. spumarius. The model considers the initial physiological age distribution of eggs, the diapause termination process, and the development rate functions of post-diapausing eggs and nymphal stages, estimated from data collected in laboratory experiments and field surveys in Italy. The temperature threshold and cumulative degree days for egg diapause termination were estimated as 6.5 °C and 120 DD, respectively. Preimaginal development rate functions exhibited lower thresholds ranging between 2.1 and 5.0 °C, optimal temperatures between 26.6 and 28.3 °C, and upper threshold between 33.0 and 35 °C. The model correctly simulates the emergence of the 3rd, 4th, and 5th nymphal instars, key stages to target monitoring actions and control measures against P. spumarius. Precision in simulating the phenology of the 1st and 2nd nymphal stages was less satisfactory. The model is a useful rational decision tool to support scheduling monitoring and control actions against the late and most important nymphal stages of P. spumarius.


Asunto(s)
Diapausa , Hemípteros , Animales , Temperatura , Hemípteros/fisiología , Italia , Ninfa
15.
Plant Physiol Biochem ; 210: 108609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615442

RESUMEN

Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.


Asunto(s)
Micrococcaceae , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Micrococcaceae/metabolismo , Micrococcaceae/genética , Microbiología del Suelo , Regulación de la Expresión Génica de las Plantas
16.
Front Mol Biosci ; 10: 1273814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854039

RESUMEN

Cell-free therapy based on conditioned medium derived from mesenchymal stromal cells (MSCs) has gained attention in the field of protective and regenerative medicine. However, the exact composition and properties of MSC-derived conditioned media can vary greatly depending on multiple parameters, which hamper standardization. In this study, we have optimized a procedure for preparation of conditioned medium starting from efficient isolation, propagation and characterization of MSCs from human umbilical cord, using a culture medium supplemented with human platelet lysate as an alternative source to fetal bovine serum. Our procedure successfully maximizes the yield of viable MSCs that maintain canonical key features. Importantly, under these conditions, the compositional profile and biological effects elicited by the conditioned medium preparations derived from these MSC populations do not depend on donor individuality. Moreover, approximately 120 L of conditioned medium could be obtained from a single umbilical cord, which provides a suitable framework to produce industrial amounts of toxic-free conditioned medium with predictable composition.

17.
Insects ; 14(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37754745

RESUMEN

Following the detection of the quarantine bacterium Xylella fastidiosa (Wells et al.) in the Apulia region (southern Italy) and the identification of spittlebugs as the main vector species that contributes to its epidemic spread, monitoring activities have been intensified in an attempt to implement vector control strategies. To date, sweep nets have been the most widely used sampling method to monitor adult spittlebug populations. Field experiments were carried out, during 2018 and 2019, to evaluate the effectiveness of sticky traps in capturing spittlebugs in different woody crops. The attractiveness of different traps was compared: four colored sticky traps (white, red, blue, and yellow), with the yellow sticky traps having three different background patterns (plain yellow, yellow with a black circle pattern, and yellow with a black line pattern). In addition, the efficiency of the yellow sticky traps was evaluated by placing the traps on the ground or hanging them from the canopies in orchards with different spittlebug population densities. Trap catches of Philaenus spumarius (Linnaeus) and Neophilaenus campestris (Fallén) (Hemiptera: Aphrophoridae) were compared with those collected using sweep nets. The two spittlebug species showed a similar response to the colored traps and were mainly attracted to the yellow sticky traps. Captures throughout the adult season indicated that an accurate estimation of the presence and abundance of spittlebugs can be obtained by integrating the two sampling methods. Moreover, sweep nets appeared to be more efficient in collecting adults soon after their emergence, while the use of sticky traps was more efficient in the rest of the adult season when the use of traps can significantly expedite vector monitoring programs.

18.
Metabolites ; 13(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36984814

RESUMEN

The use of chemical fertilizers and pesticides has caused harmful impacts on the environment with the increase in economic burden. Biofertilizers are biological products containing living microorganisms capable of improving plant growth through eco-friendly mechanisms. In this work, three actinobacterial strains Streptomyces violaceoruber, Streptomyces coelicolor, and Kocuria rhizophila were characterized for multiple plant growth promoting (PGP) traits such as indole acetic acid production, phosphate solubilization, N2-fixation, and drought and salt tolerance. Then, these strains were investigated for their secreted and cellular metabolome, revealing a rich arsenal of bioactive molecules, including antibiotics and siderophores, with S. violaceoruber being the most prolific strain. Furthermore, the in vivo assays, performed on tomato (Solanum lycopersicum L.), resulted in an improved germination index and the growth of seedlings from seeds treated with PGP actinobacteria, with a particular focus on S. violaceoruber cultures. In particular, this last strain, producing volatile organic compounds having antimicrobial activity, was able to modulate volatilome and exert control on the global DNA methylation of tomato seedlings. Thus, these results, confirming the efficacy of the selected actinobacteria strains in promoting plant growth and development by producing volatile and non-volatile bioactive molecules, can promote eco-friendly alternatives in sustainable agriculture.

19.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37082140

RESUMEN

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

20.
Genes (Basel) ; 13(3)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327968

RESUMEN

The Argonaute (AGO) and the Trinucleotide Repeat Containing 6 (TNRC6) family proteins are the core components of the mammalian microRNA-induced silencing complex (miRISC), the machinery that mediates microRNA function in the cytoplasm. The cytoplasmic miRISC-mediated post-transcriptional gene repression has been established as the canonical mechanism through which AGO and TNRC6 proteins operate. However, growing evidence points towards an additional mechanism through which AGO and TNRC6 regulate gene expression in the nucleus. While several mechanisms through which miRISC components function in the nucleus have been described, in this review we aim to summarize the major findings that have shed light on the role of AGO and TNRC6 in mammalian chromatin biology and on the implications these novel mechanisms may have in our understanding of regulating gene expression.


Asunto(s)
MicroARNs , Animales , Proteínas Argonautas/genética , Biología , Cromatina/genética , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA