Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 23(7): e202100659, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092633

RESUMEN

One major challenge of future sustainable photochemistry is to replace precious and rare transition metals in applications such as energy conversion or electroluminescence by earth-abundant, cheap, and recyclable materials. This involves using coordination complexes of first row transition metals such as Cu, Cr, or Mn. In the case of iron, which is attractive due to its natural abundance, fundamental limitations imposed by the small ligand field splitting energy have recently been overcome. In this review article, we briefly summarize the present knowledge and understanding of the structure-property relationships of Fe(II) and Fe(III) complexes with excited state lifetimes in the nanosecond range. However, our main focus is to examine to which extent the ultrafast spectroscopy methods used so far provided insight into the excited state structure and the photo-induced dynamics of these complexes. Driven by the main question of how to spectroscopically, i. e. in energy and concentration, differentiate the population of ligand- vs. metal-centered states, the hitherto less exploited ultrafast vibrational spectroscopy is suggested to provide valuable complementary insights.


Asunto(s)
Complejos de Coordinación , Compuestos Férricos , Complejos de Coordinación/química , Compuestos Ferrosos/química , Estructura Molecular , Análisis Espectral
2.
Development ; 145(16)2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166318

RESUMEN

The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level.


Asunto(s)
Linaje de la Célula/fisiología , Feto/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Riñón/embriología , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Feto/citología , Perfilación de la Expresión Génica , Humanos , Riñón/citología , Ratones , Células Madre/citología
3.
Proc Natl Acad Sci U S A ; 115(45): E10605-E10614, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348760

RESUMEN

Hox5 genes (Hoxa5, Hoxb5, Hoxc5) are exclusively expressed in the lung mesenchyme during embryogenesis, and the most severe phenotypes result from constitutive loss of function of all three genes. Because Hox5 triple null mutants exhibit perinatal lethality, the contribution of this paralogous group to postembryonic lung development is unknown. Intriguingly, expression of all three Hox5 genes peaks during the first 2 weeks after birth, reaching levels far exceeding those measured at embryonic stages, and surviving Hoxa5 single and Hox5 AabbCc compound mutants exhibit defects in the localization of alveolar myofibroblasts. To define the contribution of the entire Hox5 paralogous group to this process, we generated an Hoxa5 conditional allele to use with our existing null alleles for Hoxb5 and Hoxc5 Postnatally, mesenchymal deletion of Hoxa5 in an Hoxb5/Hoxc5 double-mutant background results in severe alveolar simplification. The elastin network required for alveolar formation is dramatically disrupted in Hox5 triple mutants, while the basal lamina, interstitial matrix, and fibronectin are normal. Alveolar myofibroblasts remain Pdgfrα+/SMA+ double positive and present in normal numbers, indicating that the irregular elastin network is not due to fibroblast differentiation defects. Rather, we observe that SMA+ myofibroblasts of Hox5 triple mutants are morphologically abnormal both in vivo and in vitro with highly reduced adherence to fibronectin. This loss of adhesion is a result of loss of the integrin heterodimer Itga5b1 in mutant fibroblasts. Collectively, these data show an important role for Hox5 genes in lung fibroblast adhesion necessary for proper elastin network formation during alveologenesis.


Asunto(s)
Adhesión Celular , Elastina/metabolismo , Genes Homeobox , Miofibroblastos/citología , Alveolos Pulmonares/citología , Alelos , Animales , Dimerización , Regulación del Desarrollo de la Expresión Génica , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Ratones , Mutación , Miofibroblastos/metabolismo , Alveolos Pulmonares/metabolismo
4.
PLoS Biol ; 14(2): e1002382, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26894589

RESUMEN

Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.


Asunto(s)
Riñón/embriología , Morfogénesis , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas Proto-Oncogénicas c-ret/fisiología , Células Madre/fisiología , Animales , Movimiento Celular , Femenino , Masculino , Ratones , Técnicas de Cultivo de Órganos
5.
Inorg Chem ; 58(8): 5069-5081, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30950264

RESUMEN

The control of photophysical properties of iron complexes and especially of their excited states decay is a great challenge in the search for sustainable alternatives to noble metals in photochemical applications. Herein we report the synthesis and investigations of the photophysics of mer and fac iron complexes bearing bidentate pyridyl-NHC ligands, coordinating the iron with three ligand-field-enhancing carbene bonds. Ultrafast transient absorption spectroscopy reveals two distinct excited state populations for both mer and fac forms, ascribed to the populations of the T1 and the T2 states, respectively, which decay to the ground state via parallel pathways. We find 3-4 ps and 15-20 ps excited-state lifetimes, with respective amplitudes depending on the isomer. The longer lifetime exceeds the one reported for iron complexes with tridentate ligands analogues involving four iron-carbene bonds. By combining experimental and computational results, a mechanism based on the differential trapping of the triplet states in spin-crossover regions is proposed for the first time to explain the impact of the fac/ mer isomerism on the overall excited-state lifetimes. Our results clearly highlight the impact of bidentate pyridyl-NHC ligands on the photophysics of iron complexes, especially the paramount role of fac/ mer isomerism in modulating the overall decay process, which can be potentially exploited in the design of new Fe(II)-based photoactive compounds.

6.
Kidney Int ; 93(3): 589-598, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29217079

RESUMEN

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.


Asunto(s)
Proliferación Celular/genética , Autorrenovación de las Células/genética , Haploinsuficiencia , Proteínas de Homeodominio/genética , Morfogénesis/genética , Nefronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Proteínas Reguladoras de la Apoptosis , Factores de Crecimiento de Fibroblastos/deficiencia , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Ratones Noqueados , Nefronas/embriología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/deficiencia
7.
Inorg Chem ; 57(16): 10431-10441, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30063338

RESUMEN

The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.

8.
Beilstein J Org Chem ; 14: 1459-1481, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013674

RESUMEN

Phosphorescent organometallic compounds based on heavy transition metal complexes (TMCs) are an appealing research topic of enormous current interest. Amongst all different fields in which they found valuable application, development of emitting materials based on TMCs have become crucial for electroluminescent devices such as phosphorescent organic light-emitting diodes (PhOLEDs) and light-emitting electrochemical cells (LEECs). This interest is driven by the fact that luminescent TMCs with long-lived excited state lifetimes are able to efficiently harvest both singlet and triplet electro-generated excitons, thus opening the possibility to achieve theoretically 100% internal quantum efficiency in such devices. In the recent past, various classes of compounds have been reported, possessing a beautiful structural variety that allowed to nicely obtain efficient photo- and electroluminescence with high colour purity in the red, green and blue (RGB) portions of the visible spectrum. In addition, achievement of efficient emission beyond such range towards ultraviolet (UV) and near infrared (NIR) regions was also challenged. By employing TMCs as triplet emitters in OLEDs, remarkably high device performances were demonstrated, with square planar platinum(II) complexes bearing π-conjugated chromophoric ligands playing a key role in such respect. In this contribution, the most recent and promising trends in the field of phosphorescent platinum complexes will be reviewed and discussed. In particular, the importance of proper molecular design that underpins the successful achievement of improved photophysical features and enhanced device performances will be highlighted. Special emphasis will be devoted to those recent systems that have been employed as triplet emitters in efficient PhOLEDs.

9.
Chemistry ; 23(70): 17626-17636, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-28857379

RESUMEN

Functional materials that respond to external stimuli are of major current interest. In particular, supramolecular systems that can interact with their surroundings, adapt to environmental changes and evolve with are even more fascinating, yet challenging. Combining the rich physico-chemical properties featured by metal centres with characteristics typical of classical organic polymers, metallopolymers or metallo-supramolecular polymers can be prepared, depending on their static versus dynamic structural features. Additionally, multiple and orthogonal functionalities can be encoded in their chemical structure affording materials with widespread potential applications to be employed as "smart" materials for advanced technologies. In this Concept article, selected examples of metal-containing polymers will be described demonstrating large potentialities of such systems for creating stimuli-responsive materials with special emphasis for those showing optical applications.

10.
Org Biomol Chem ; 15(40): 8568-8575, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28972609

RESUMEN

A selective microwave-assisted mono- and bis-annulation of dialkynyl-N-(het)arylpyrrole derivatives is described. These polycyclic aromatic hydrocarbons (PAHs) have been photophysically and computationally characterized. The mono-annulated systems display interesting charge-transfer properties. By contrast, these properties vanish within the more conjugated bis-annulated compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA