Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 90(7): 4711-4718, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29498261

RESUMEN

There are many gas phase compounds present in the atmosphere that affect and influence the earth's climate. These compounds absorb and emit radiation, a process which is the fundamental cause of the greenhouse effect. The major greenhouse gases in the earth's atmosphere are carbon dioxide, methane, nitrous oxide, and ozone. Some halocarbons are also strong greenhouse gases and are linked to stratospheric ozone depletion. Hydrocarbons and monoterpenes are precursors and contributors to atmospheric photochemical processes, which lead to the formation of particulates and secondary photo-oxidants such as ozone, leading to photochemical smog. Reactive gases such as nitric oxide and sulfur dioxide are also compounds found in the atmosphere and generally lead to the formation of other oxides. These compounds can be oxidized in the air to acidic and corrosive gases and contribute to photochemical smog. Measurements of these compounds in the atmosphere have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas phase compounds in atmospheric chemistry, it is essential to have good calibration standards. The National Institute of Standards and Technology has been developing standards of many of these compounds for over 40 years. This paper discusses the development of these standards.

2.
Environ Sci Process Impacts ; 26(6): 1090-1106, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38787731

RESUMEN

Devices using 222 nm germicidal ultraviolet light (GUV222) have been marketed to reduce virus transmission indoors with low risk of occupant harm from direct UV exposure. GUV222 generates ozone, an indoor air pollutant and oxidant, under constrained laboratory conditions, but the chemistry byproducts of GUV222-generated ozone in real indoor spaces is uncharacterized. We deployed GUV222 in a public restroom, with an air change rate of 1 h-1 one weekend and 2 h-1 the next, to measure ozone formation and byproducts generated from ozone chemistry indoors. Ozone from GUV222 increased background concentrations by 5 ppb on average for both weekends and reacted rapidly (e.g., at rates of 3.7 h-1 for the first weekend and 2.0 h-1 for the second) with gas-phase precursors emitted by urinal screens and on surfaces. These ozone reactions generated volatile organic compound and aerosol byproducts (e.g., up to 2.6 µg m-3 of aerosol mass). We find that GUV222 is enhancing indoor chemistry by at least a factor of two for this restroom. The extent of this enhanced chemistry will likely be different for different indoor spaces and is dependent upon ventilation rates, species and concentrations of precursor VOCs, and surface reactivity. Informed by our measurements of ozone reactivity and background aerosol concentrations, we present a framework for predicting aerosol byproduct formation from GUV222 that can be extended to other indoor spaces. Further research is needed to understand how typical uses of GUV222 could impact air quality in chemically diverse indoor spaces and generate indoor air chemistry byproducts that can affect human health.


Asunto(s)
Contaminación del Aire Interior , Ozono , Rayos Ultravioleta , Ozono/química , Ozono/análisis , Contaminación del Aire Interior/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis
3.
J Breath Res ; 16(4)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584612

RESUMEN

Exhaled breath is a non-invasive, information-rich matrix with the potential to diagnose or monitor disease, including infectious disease. Despite significant effort dedicated to biomarker identification in case control studies, very few breath tests are established in practice. In this topical review, we identify how gas standards support breath analysis today and what is needed to support further expansion and translation to practice. We examine forensic and clinical breath tests and discuss how confidence has been built through unambiguous biomarker identification and quantitation supported by gas calibration standards. Based on this discussion, we identify a need for multicomponent gas standards with part-per-trillion to part-per-million concentrations. We highlight National Institute of Standards and Technology gas standards developed for atmospheric measurements that are also relevant to breath analysis and describe investigations of long-term stability, chemical reactions, and interactions with gas cylinder wall treatments. An overview of emerging online instruments and their need for gas standards is also presented. This review concludes with a discussion of our ongoing research to examine the feasibility of producing multicomponent gas standards at breath-relevant concentrations. Such standards could be used to investigate interference from ubiquitous endogenous compounds and as a starting point for standards tailored to specific breath tests.


Asunto(s)
Pruebas Respiratorias , Compuestos Orgánicos Volátiles , Biomarcadores , Espiración , Humanos , Estándares de Referencia , Compuestos Orgánicos Volátiles/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-32118079

RESUMEN

Measurements of volatile organic compounds (VOCs) have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas-phase compounds in atmospheric chemistry it is essential to have good calibration standards. A necessity and precursor to accurate VOC gas standards are the gas cylinders and the internal wall treatments that aid in maintaining the stability of the mixtures over long periods of time, measured in years. This paper will discuss the stability of VOC gas mixtures in different types of gas cylinders and internal wall treatments. Stability data will be given for 85 VOCs studied in gas mixtures by National Metrology Institutes and other agency laboratories. This evaluation of cylinder treatment materials is the outcome of an activity of the VOC Expert Group within the framework of the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA