Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445988

RESUMEN

Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , ARN Largo no Codificante/metabolismo , Neoplasias Ováricas/metabolismo , Perfilación de la Expresión Génica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética
2.
Biochem Cell Biol ; 94(5): 480-490, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27617756

RESUMEN

Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.


Asunto(s)
Centro Germinal/metabolismo , Mytilus/metabolismo , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Histonas/metabolismo , Mutación/genética , Mytilus/genética , Filogenia , Conformación Proteica , Proteínas/química , Homología de Secuencia de Ácido Nucleico
3.
Microbiology (Reading) ; 160(Pt 7): 1357-1368, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24763424

RESUMEN

Cisplatin is commonly used in cancer therapy and yeast cells are also sensitive to this compound. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin treatment, which are dependent on or independent of SKY1 function--a gene whose deletion increases resistance to the drug. Gene expression changes produced by addition of cisplatin to W303 and W303-Δsky1 cells were recorded using DNA microarrays. The data, validated by quantitative PCR, revealed 122 differentially expressed genes: 69 upregulated and 53 downregulated. Among the upregulated genes, those related to sulfur metabolism were over-represented and partially dependent on Sky1. Deletions of MET4 or other genes encoding co-regulators of the expression of sulfur-metabolism-related genes, with the exception of MET28, did not modify the cisplatin sensitivity of yeast cells. One of the genes with the highest cisplatin-induced upregulation was SEO1, encoding a putative permease of sulfur compounds. We also measured the platinum, sulfur and glutathione content in W303, W303-Δsky1 and W303-Δseo1 cells after cisplatin treatment, and integration of the data suggested that these transcriptional changes might represent a cellular response that allowed chelation of cisplatin with sulfur-containing amino acids and also helped DNA repair by stimulating purine biosynthesis. The transcription pattern of stimulation of sulfur-containing amino acids and purine synthesis decreased, or even disappeared, in the W303-Δsky1 strain.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Azufre/metabolismo , Regulación hacia Abajo , Expresión Génica , Perfilación de la Expresión Génica , Glutatión/análisis , Glutatión/metabolismo , Concentración 50 Inhibidora , Redes y Vías Metabólicas , Platino (Metal)/análisis , Platino (Metal)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Azufre/análisis , Transcriptoma , Regulación hacia Arriba
4.
Int J Mol Sci ; 15(7): 12573-90, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25029545

RESUMEN

Sky1 is the only member of the SR (Serine-Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin. Results reveal differential expression of proteins previously related to the oxidative stress response, DNA damage, apoptosis and mitophagy. With these precedents, the role of Sky1 in apoptosis, necrosis and mitophagy has been evaluated by flow-cytometry, fluorescence microscopy, biosensors and fluorescence techniques. After cisplatin treatment, an apoptotic-like process diminishes in the ∆sky1 strain in comparison to the wild-type. The treatment does not affect mitophagy in the wild-type strain, while an increase is observed in the ∆sky1 strain. The increased resistance to cisplatin observed in the ∆sky1 strain may be attributable to a decrease of apoptosis and an increase of mitophagy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Mitofagia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Resistencia a Antineoplásicos/genética , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/genética , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Struct Biol ; 177(2): 392-401, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22193516

RESUMEN

ß-Galactosidase or lactase is a very important enzyme in the food industry, being that from the yeast Kluyveromyces lactis the most widely used. Here we report its three-dimensional structure both in the free state and complexed with the product galactose. The monomer folds into five domains in a pattern conserved with the prokaryote enzymes of the GH2 family, although two long insertions in domains 2 and 3 are unique and related to oligomerization and specificity. The tetrameric enzyme is a dimer of dimers, with higher dissociation energy for the dimers than for its assembly. Two active centers are located at the interface within each dimer in a narrow channel. The insertion at domain 3 protrudes into this channel and makes putative links with the aglycone moiety of docked lactose. In spite of common structural features related to function, the determinants of the reaction mechanism proposed for Escherichia coli ß-galactosidase are not found in the active site of the K. lactis enzyme. This is the first X-ray crystal structure for a ß-galactosidase used in food processing.


Asunto(s)
Proteínas Fúngicas/química , Galactosa/química , Kluyveromyces/enzimología , beta-Galactosidasa/química , Dominio Catalítico , Complejos de Coordinación/química , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Especificidad por Sustrato , Propiedades de Superficie
6.
Appl Microbiol Biotechnol ; 94(1): 173-84, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22189861

RESUMEN

In Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation of HEM13 during hypoxic growth. Analysis of the transcriptome of the wild-type strain BY4741 and its isogenic derivative Δixr1, grown in aerobic and hypoxic conditions, reveals differential regulation of genes related not only to the hypoxic and oxidative stress responses but also to the re-adaptation of catabolic and anabolic fluxes in response to oxygen limitation. The function of Ixr1p in the transcriptional regulation of genes from the sulfate assimilation pathway and other pathways producing α-keto acids is of biotechnological importance for industries based on yeast-derived fermentation products.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Estrés Oxidativo , Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
7.
Eukaryot Cell ; 10(10): 1331-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821717

RESUMEN

Two proteins that differ at the N terminus (l-KlCpo and s-KlCpo) are derived from KlHEM13, a single-copy-number gene in the haploid genome of Kluyveromyces lactis. Two transcriptional start site (tss) pools are detectable using primer extension, and their selection is heme dependent. One of these tss pools is located 5' of the first translation initiation codon (TIC) in the open reading frame of KlHEM13, while the other is located between the first and second TICs. In terms of functional significance, only s-KlCpo complements the heme deficiency caused by the Δhem13 deletion in K. lactis. Data obtained from immune detection in subcellular fractions, directed mutagenesis, chromatin immunoprecipitation (ChIP) assays, and the functional relevance of ΔKlhem13 deletion for KlHEM13 promoter activity suggest that l-KlCpo regulates KlHEM13 transcription. A hypothetical model of the evolutionary origins and coexistence of these two proteins in K. lactis is discussed.


Asunto(s)
Coproporfirinógeno Oxidasa/genética , Proteínas Fúngicas/genética , Kluyveromyces/enzimología , Kluyveromyces/genética , Secuencia de Aminoácidos , Secuencia de Bases , Coproporfirinógeno Oxidasa/química , Coproporfirinógeno Oxidasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Kluyveromyces/química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Sitio de Iniciación de la Transcripción , Transcripción Genética
8.
Can J Microbiol ; 58(2): 184-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260231

RESUMEN

The yeast Saccharomyces cerevisiae has been previously used as a model eukaryotic system to identify genes related to drug resistance. Deletion of the IXR1 gene increases resistance to cisplatin, and deletion of the SKY1 gene increases resistance to cisplatin and spermine. Three S. cerevisiae strains and their derivatives, carrying single Δixr1 and Δsky1 and double Δixr1Δsky1 deletions, were compared in terms of resistance against these compounds. We found that the effects of these deletions are highly dependent on the genetic background of the selected strains. These results are valuable in the selection of yeast strains to be used in genetic screenings of compounds with putative pharmacological interest.


Asunto(s)
Farmacorresistencia Fúngica/genética , Saccharomyces cerevisiae/fisiología , Antineoplásicos/farmacología , Cisplatino/farmacología , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espermina/farmacología
9.
Biotechnol Lett ; 34(12): 2161-73, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23007444

RESUMEN

Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.


Asunto(s)
Biotecnología/métodos , Oxígeno/metabolismo , Estrés Fisiológico , Levaduras/fisiología , Anaerobiosis , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Glutatión/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Virulencia/metabolismo , Levaduras/metabolismo
10.
Sci Rep ; 12(1): 17571, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266428

RESUMEN

The E3 ubiquitin-ligases are important for cellular protein homeostasis and their deregulation is implicated in cancer. The E3 ubiquitin-ligase Hakai is involved in tumour progression and metastasis, through the regulation of the tumour suppressor E-cadherin. Hakai is overexpressed in colon cancer, however, the implication in colitis-associated cancer is unknown. Here, we investigated the potential role of Hakai in intestinal inflammation and cancer bowel disease. Several mouse models of colitis and associated cancer were used to analyse Hakai expression by immunohistochemistry. We also analysed Hakai expression in patients with inflamed colon biopsies from ulcerative colitis and Crohn's disease. By Hakai interactome analysis, it was identified Fatty Acid Synthase (FASN) as a novel Hakai-interacting protein. Moreover, we show that Hakai induces FASN ubiquitination and degradation via lysosome, thus regulating FASN-mediated lipid accumulation. An inverse expression of FASN and Hakai was detected in inflammatory AOM/DSS mouse model. In conclusion, Hakai regulates FASN ubiquitination and degradation, resulting in the regulation of FASN-mediated lipid accumulation, which is associated to the development of inflammatory bowel disease. The interaction between Hakai and FASN may be an important mechanism for the homeostasis of intestinal barrier function and in the pathogenesis of this disease.


Asunto(s)
Colitis , Neoplasias del Colon , Ubiquitina-Proteína Ligasas , Animales , Ratones , Cadherinas/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ácido Graso Sintasas , Inflamación , Lípidos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas , Colitis/complicaciones , Colitis/metabolismo
11.
J Biol Chem ; 285(36): 28020-33, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20592022

RESUMEN

Alpha-galactosidases catalyze the hydrolysis of terminal alpha-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae alpha-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 A resolution. The monomer folds into a catalytic (alpha/beta)(8) barrel and a C-terminal beta-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the beta-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions.


Asunto(s)
Saccharomyces cerevisiae/enzimología , alfa-Galactosidasa/química , alfa-Galactosidasa/metabolismo , Secuencia de Aminoácidos , Animales , Estabilidad de Enzimas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Ingeniería de Proteínas , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , alfa-Galactosidasa/genética
12.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572607

RESUMEN

In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HMGB/metabolismo , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/genética , Secuencia de Bases , Cadmio/toxicidad , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Proteínas Fúngicas/química , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HMGB/química , Hemo/biosíntesis , Peróxido de Hidrógeno/toxicidad , Kluyveromyces/efectos de los fármacos , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/genética , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Cancers (Basel) ; 13(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34572914

RESUMEN

This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.

14.
Artículo en Inglés | MEDLINE | ID: mdl-20057068

RESUMEN

Saccharomyces cerevisiae alpha-galactosidase is a highly glycosylated extracellular protein that catalyzes the hydrolysis of alpha-galactosidic linkages in various glucids. Its enzymatic activity is of interest in many food-related industries and has biotechnological applications. Glycosylated and in vitro deglycosylated protein samples were both assayed for crystallization, but only the latter gave good-quality crystals that were suitable for X-ray crystallography. The crystals belonged to space group P42(1)2, with unit-cell parameters a = b = 101.24, c = 111.52 A. A complete diffraction data set was collected to 1.95 A resolution using a synchrotron source.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , alfa-Galactosidasa/química , Cristalización , Cristalografía por Rayos X , Saccharomyces cerevisiae
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 3): 297-300, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20208165

RESUMEN

Beta-galactosidase from Kluyveromyces lactis catalyses the hydrolysis of the beta-galactosidic linkage in lactose. Owing to its many industrial applications, the biotechnological potential of this enzyme is substantial. This protein has been expressed in yeast and purified for crystallization trials. However, optimization of the best crystallization conditions yielded crystals with poor diffraction quality that precluded further structural studies. Finally, the crystal quality was improved using the streak-seeding technique and a complete diffraction data set was collected at 2.8 A resolution.


Asunto(s)
Kluyveromyces/enzimología , beta-Galactosidasa/química , Cristalización , Cristalografía por Rayos X
16.
Biochem J ; 425(1): 235-43, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19807692

RESUMEN

Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica , Aerobiosis , Anaerobiosis , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas del Grupo de Alta Movilidad/genética , Modelos Biológicos , Oxígeno/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transformación Genética , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
17.
Curr Med Chem ; 27(20): 3271-3289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30674244

RESUMEN

We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.


Asunto(s)
Proteína HMGB1/genética , Proteína HMGB2/genética , Neoplasias Ováricas/genética , Neoplasias de la Próstata , Animales , Femenino , Humanos , Masculino , Ovario , Neoplasias de la Próstata/genética
18.
Microb Cell Fact ; 8: 46, 2009 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-19715615

RESUMEN

A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.

19.
Sci Rep ; 8(1): 3090, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449612

RESUMEN

Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.


Asunto(s)
Cisplatino/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Antineoplásicos/farmacología , Reparación del ADN , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
20.
Biochim Biophys Acta ; 1757(11): 1476-84, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17052684

RESUMEN

The mitochondria of the respiratory yeast Kluyveromyces lactis are able to reoxidize cytosolic NADPH. Previously, we characterized an external alternative dehydrogenase, KlNde1p, having this activity. We now characterize the second external alternative dehydrogenase of K. lactis mitochondria, KlNde2p. We examined its role in cytosolic NADPH reoxidation by studying heterologous expression of KlNDE2 in Saccharomyces cerevisiae mutants and by constructing Deltaklnde1 and Deltaklnde2 mutants. KlNde2p uses NADH or NADPH as substrates, its activity in isolated mitochondria is not regulated by exogenously added calcium and it is not down-regulated when the cells grow in glucose versus lactate. KlNde2p shows lower affinity for NADPH than KlNde1p. Both enzymes show similar pH optimum.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Kluyveromyces/enzimología , Mitocondrias/enzimología , Oxidorreductasas/química , Secuencia de Aminoácidos , Calcio/metabolismo , Clonación Molecular , Citosol/enzimología , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación , Oxidorreductasas/metabolismo , Consumo de Oxígeno , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA