Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664270

RESUMEN

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Asunto(s)
Clima Desértico , Ambientes Extremos , Oxidación-Reducción , Percloratos , Percloratos/metabolismo , Metagenoma , Microbiota
2.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822161

RESUMEN

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Asunto(s)
Acaricidas , Filogenia , Serratia , Animales , Serratia/genética , Acaricidas/farmacología , Genoma Bacteriano , Control Biológico de Vectores , Quitinasas/genética , Quitinasas/metabolismo , México
3.
J Gastroenterol Hepatol ; 38(5): 791-799, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807933

RESUMEN

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease. Increasing evidence indicates that the gut microbiota can play an important role in the pathophysiology of NAFLD. Recently, several studies have tested the predictive value of gut microbiome profiles in NAFLD progression; however, comparisons of microbial signatures in NAFLD or non-alcoholic steatohepatitis (NASH) have produced discrepant results, possibly due to ethnic and environmental factors. Thus, we aimed to characterize the gut metagenome composition of patients with fatty liver disease. METHODS: Gut microbiome of 45 well-characterized patients with obesity and biopsy-proven NAFLD was evaluated using shot-gun sequencing: 11 non-alcoholic fatty liver controls (non-NAFL), 11 with fatty liver, and 23 with NASH. RESULTS: Our study showed that Parabacteroides distasonis and Alistipes putredenis were enriched in fatty liver but not in NASH patients. Notably, in a hierarchical clustering analysis, microbial profiles were differentially distributed among groups, and membership to a Prevotella copri dominant cluster was associated with a greater risk of developing NASH. Functional analyses showed that although no differences in LPS biosynthesis pathways were observed, Prevotella-dominant subjects had higher circulating levels of LPS and a lower abundance of pathways encoding butyrate production. CONCLUSIONS: Our findings suggest that a Prevotella copri dominant bacterial community is associated with a greater risk for NAFLD disease progression, probably linked to higher intestinal permeability and lower capacity for butyrate production.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Metagenoma , Lipopolisacáridos , Prevotella/genética , Obesidad/complicaciones , Butiratos
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768387

RESUMEN

Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.


Asunto(s)
Magnoliopsida , Persea , Tephritidae , Animales , Femenino , Oviposición , Tephritidae/genética , Frutas
5.
Bull Environ Contam Toxicol ; 108(1): 93-98, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33954861

RESUMEN

Degradation efficiency of a heavy crude oil by a marine microbial consortium was evaluated in this study, with and without the addition of a chemical dispersant (Nokomis 3-F4). 15.50% of total petroleum hydrocarbons (TPH) were removed after 15 days of incubation without dispersant, with a degradation rate of 2.39 ± 0.22 mg L-1 day-1. In contrast, the addition of Nokomis 3-F4 increased TPH degradation up to 30.81% with a degradation rate of 5.07 ± 0.37 mg L-1 day-1. 16S rRNA gene sequencing indicated a dominance of the consortium by Achromobacter and Alcanivorax. Nonetheless, significant increases in the relative abundance of Martelella and Ochrobactrum were observed with the addition of Nokomis 3-F4. These results will contribute to further environmental studies of the Gulf of Mexico, where Nokomis 3-F4 can be used as chemical dispersant.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Consorcios Microbianos , Contaminación por Petróleo/análisis , ARN Ribosómico 16S/genética , Agua , Contaminantes Químicos del Agua/análisis
6.
Bull Environ Contam Toxicol ; 108(1): 55-63, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34272966

RESUMEN

Oiling scenarios following spills vary in concentration and usually can affect large coastal areas. Consequently, this research evaluated different crude oil concentrations (10, 40, and 80 mg L-1) on the nearshore phytoplanktonic community in the southern Gulf of Mexico. This experiment was carried out for ten days using eight units of 2500 L each; factors monitored included shifts in phytoplankton composition, physicochemical parameters and the culturable bacterial abundance of heterotrophic and hydrocarbonoclastic groups. The temperature, salinity, and nutrient concentrations measured were within the ranges previously reported for Yucatan Peninsula waters. The total hydrocarbon concentration (TPH) in the control at T0 indicated the presence of hydrocarbons (PAHs 0.80 µg L-1, aliphatics 7.83 µg L-1 and UCM 184.09 µg L-1). At T0, the phytoplankton community showed a similar assemblage structure and composition in all treatments. At T10, the community composition remained heterogeneous in the control, in agreement with previous reports for the area. However, for oiled treatments, Bacillariophyceae dominated at T10. Hydrocarbonoclastic bacteria were associated with oiled treatments throughout the experiment, while heterotrophic bacteria were associated with control conditions. Our results agreed with previous works at the taxonomic level showing the presence of Bacillariophyceae and Dinophyceae in oil-related treatments, where these groups showed the major interactions in co-occurrence networks. In contrast, Chlorophyceae showed the key node in the co-occurrence network for the control. This study aims to contribute to knowledge on phytoplankton community shifts during a crude oil spill in subtropical oligotrophic regions.


Asunto(s)
Diatomeas , Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Golfo de México , Contaminación por Petróleo/análisis , Fitoplancton
7.
Microb Ecol ; 81(4): 908-921, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33196853

RESUMEN

This study investigates the community composition, structure, and abundance of sulfate-reducing microorganisms (SRM) in surficial sediments of the Northwestern Gulf of Mexico (NWGoM) along a bathymetric gradient. For these purposes, Illumina sequencing and quantitative PCR (qPCR) of the dissimilatory sulfite reductase gene beta subunit (dsrB gene) were performed. Bioinformatic analyses indicated that SRM community was predominantly composed by members of Proteobacteria and Firmicutes across all the samples. However, Actinobacteria, Thermodesulfobacteria, and Chlorobi were also detected. Phylogenetic analysis indicated that unassigned dsrB sequences were related to Deltaproteobacteria and Nitrospirota superclusters, Euryarchaeota, and to environmental clusters. PCoA ordination revealed that samples clustered in three different groups. PERMANOVA indicated that water depth, temperature, redox, and nickel and cadmium content were the main environmental drivers for the SRM communities in the studied sites. Alpha diversity and abundance of SRM were lower for deeper sites, suggesting decreasing sulfate reduction activity with respect to water depth. This study contributes with the understanding of distribution and composition of dsrAB-containing microorganisms involved in sulfur transformations that may contribute to the resilience and stability of the benthic microbial communities facing metal and hydrocarbon pollution in the NWGoM, a region of recent development for oil and gas drilling.


Asunto(s)
Bacterias , Sulfatos , Bacterias/genética , Sedimentos Geológicos , Golfo de México , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
8.
J Toxicol Environ Health A ; 83(8): 313-329, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32378477

RESUMEN

Exposure to contaminants might directly affect organisms and alter their associated microbiota. The objective of the present study was to determine the impact of the petroleum-water-accommodated fraction (WAF) from a light crude oil (API gravity 35) on a benthic fish species native from the Gulf of Mexico (GoM). Ten adults of Achirus lineatus (Linnaeus, 1758) were exposed to a sublethal WAF/water solution of 50% v/v for 48 hr. Multiple endpoints were measured including tissue damage, presence of polycyclic aromatic hydrocarbons (PAHs) metabolites in bile and gut microbiota analyses. Atrophy and fatty degeneration were observed in livers. Nodules and inflammation were detected in spleen, and structural disintegration and atrophy in the kidney. In gills hyperplasia, aneurysm, and gills lamellar fusion were observed. PAHs metabolites concentrations in bile were significantly higher in exposed organisms. Gut microbiome taxonomic analysis showed significant shifts in bacterial structure and composition following WAF exposure. Data indicate that exposure to WAF produced toxic effects in adults of A. lineatus, as evidenced by histological alterations and dysbiosis, which might represent an impairment to long-term subsistence of exposed aquatic organisms.


Asunto(s)
Peces Planos/microbiología , Microbiota/efectos de los fármacos , Petróleo/análisis , Petróleo/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bilis/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad
9.
J Invertebr Pathol ; 176: 107457, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882233

RESUMEN

The spiny lobster Panulirus argus (Latreille, 1804) is currently affected by an unenveloped, icosahedral, DNA virus termed Panulirus argus virus 1 (PaV1), a virulent and pathogenic virus that produces a long-lasting infection that alters the physiology and behaviour of heavily infected lobsters. Gut-associated microbiota is crucial for lobster homeostasis and well-being, but pathogens could change microbiota composition affecting its function. In PaV1 infection, the changes of gut-associated microbiota are yet to be elucidated. In the present study, we used high-throughput 16S rRNA sequencing technology to compare the bacterial microbiota in intestines of healthy and heavily PaV1-infected male and female juveniles of spiny lobsters P. argus captured in Puerto Morelos Reef lagoon, Quintana Roo, Mexico. We found that basal gut-associated microbiota composition showed a sex-dependent bias, with females being enriched in amplicon sequence variants (ASVs) assigned to Sphingomonas, while males were enriched in the genus Candidatus Hepatoplasma and Aliiroseovarius genera. Moreover, the alpha diversity of microbiota decreased in PaV1-infected lobsters. A significant increase of the genus Candidatus Bacilloplasma was observed in infected lobsters, as well as a significant decrease in Nesterenkonia, Caldalkalibacillus, Pseudomonas, Cetobacterium and Phyllobacterium. We also observed an alteration in the abundances of Vibrio species. Results from this study suggest that PaV1 infection impacts intestinal microbiota composition in Panulirus argus in a sex-dependent manner.


Asunto(s)
Virus ADN/fisiología , Microbioma Gastrointestinal , Palinuridae/microbiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Femenino , Masculino , Palinuridae/virología , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Factores Sexuales
10.
Molecules ; 24(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540347

RESUMEN

To elucidate interactions between the antifungal cyclic lipopeptides iturin A, fengycin, and surfactin produced by Bacillus bacteria and the microtubular protein ß-tubulin in plant pathogenic fungi (Fusarium oxysporum, Colletrotrichum gloeosporioides, Alternaria alternata, and Fusarium solani) in molecular docking and molecular dynamics simulations, we retrieved the structure of tubulin co-crystallized with taxol from the Protein Data Bank (PDB) (ID: 1JFF) and the structure of the cyclic lipopeptides from PubChem (Compound CID: 102287549, 100977820, 10129764). Similarity and homology analyses of the retrieved ß-tubulin structure with those of the fungi showed that the conserved domains shared 84% similarity, and the root mean square deviation (RMSD) was less than 2 Å. In the molecular docking studies, within the binding pocket, residues Pro274, Thr276, and Glu27 of ß-tubulin were responsible for the interaction with the cyclic lipopeptides. In the molecular dynamics analysis, two groups of ligands were formed based on the number of poses analyzed with respect to the RMSD. Group 1 was made up of 10, 100, and 500 poses with distances 0.080 to 0.092 nm and RMSDs of 0.10 to 0.15 nm. For group 2, consisting of 1000 poses, the initial and final distance was 0.1 nm and the RMSDs were in the range of 0.10 to 0.30 nm. These results suggest that iturin A and fengycin bind with higher affinity than surfactin to ß-tubulin. These two lipopeptides may be used as lead compounds to develop new antifungal agents or employed directly as biorational products to control plant pathogenic fungi.


Asunto(s)
Lipopéptidos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos Cíclicos/química , Tubulina (Proteína)/química
11.
Front Physiol ; 15: 1263475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304114

RESUMEN

The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.

12.
Environ Microbiol Rep ; 16(3): e13264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692840

RESUMEN

This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 µL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.


Asunto(s)
Bacterias , Hidrocarburos , ARN Ribosómico 16S , Agua de Mar , Golfo de México , Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Microbiota , Filogenia , Petróleo/metabolismo , Petróleo/microbiología , Biodegradación Ambiental , Biodiversidad
13.
PLoS One ; 19(5): e0303480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820441

RESUMEN

Due to the dramatic reduction of sea cucumber Isostichopus badionotus populations in the Yucatan Peninsula by overfishing and poaching, aquaculture has been encouraged as an alternative to commercial catching and restoring wild populations. However, the scarcity of broodstock, the emergence of a new disease in the auricularia larvae stage, and the development of skin ulceration syndrome (SUS) in the culture have limited aquaculture development. This study presents the changes in the intestine and skin microbiota observed in early and advanced stages of SUS disease in cultured juvenile I. badionotus obtained during an outbreak in experimental culture through 16S rRNA gene sequencing and histological evidence. Our results showed inflammation in the intestines of juveniles at both stages of SUS. However, more severe tissue damage and the presence of bacterial clusters were detected only in the advanced stages of SUS. Differences in the composition and structure of the intestinal and skin bacterial community from early and advanced stages of SUS were detected, with more evident changes in the intestinal microbial communities. These findings suggest that SUS was not induced by a single pathogenic bacterium. Nevertheless, a decrease in the abundance of Vibrio and an increase in Halarcobacter (syn. Arcobacter) was observed, suggesting that these two bacterial groups could be keystone genera involved in SUS disease.


Asunto(s)
Microbiota , Pepinos de Mar , Piel , Animales , Piel/microbiología , Piel/patología , Pepinos de Mar/microbiología , Acuicultura , ARN Ribosómico 16S/genética , Úlcera Cutánea/microbiología , Úlcera Cutánea/epidemiología , Úlcera Cutánea/patología , Brotes de Enfermedades , Microbioma Gastrointestinal
14.
J Hazard Mater ; 447: 130709, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680897

RESUMEN

Bitumen fume condensate (BFC) is a hazardous wastewater generated at asphalt reclamation and production sites. BFC contains a wide variety of potentially toxic organic pollutants that negatively affect anaerobic processes. In this study, we chemically characterized BFC produced at an industrial site and evaluated its degradation under anaerobic conditions. Analyses identified about 900 compounds including acetate, polycyclic aromatic hydrocarbons, phenolic compounds, and metal ions. We estimated the half maximal inhibitory concentrations (IC50) of methanogenesis of 120, 224, and 990 mgCOD·L-1 for three types of anaerobic biomass, which indicated the enrichment and adaptation potentials of methanogenic biomass to the wastewater constituents. We operated an AnMBR (7.0 L, 35 °C) for 188 days with a mixture of BFC, phenol, acetate, and nutrients. The reactor showed a maximum average COD removal efficiency of 87.7 ± 7.0 %, that corresponded to an organic conversion rate of 286 ± 71 mgCOD-1·L-1d-1. The microbial characterization of the reactor's biomass showed the acetoclastic methanogen Methanosaeta as the most abundant microorganism (43 %), whereas the aromatic and phenol degrader Syntrophorhabdus was continuously present with abundances up to 11.5 %. The obtained results offer the possibility for the application of AnMBRs for the treatment of BFC or other petrochemical wastewater.


Asunto(s)
Gases , Aguas Residuales , Anaerobiosis , Fenol , Reactores Biológicos , Acetatos , Eliminación de Residuos Líquidos/métodos , Metano
15.
PLoS One ; 18(6): e0281385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384745

RESUMEN

The gut microbiota-brain axis is a complex communication network essential for host health. Any long-term disruption can affect higher cognitive functions, or it may even result in several chronic neurological diseases. The type and diversity of nutrients an individual consumes are essential for developing the gut microbiota (GM) and the brain. Hence, dietary patterns might influence networks communication of this axis, especially at the age that both systems go through maturation processes. By implementing Mutual Information and Minimum Spanning Tree (MST); we proposed a novel combination of Machine Learning and Network Theory techniques to study the effect of animal protein and lipid intake on the connectivity of GM and brain cortex activity (BCA) networks in children from 5-to 10 years old from an indigenous community in the southwest of México. Socio-ecological conditions in this nonwestern lifestyle community are very homogeneous among its inhabitants but it shows high individual heterogeneity in the consumption of animal products. Results suggest that MST, the critical backbone of information flow, diminishes under low protein and lipid intake. So, under these nonwestern regimens, deficient animal protein and lipid consumption diets may significantly affect the GM-BCA connectivity in crucial development stages. Finally, MST offers us a metric that unifies biological systems of different nature to evaluate the change in their complexity in the face of environmental pressures or disturbances. Effect of Diet on gut microbiota and brain networks connectivity.


Asunto(s)
Microbioma Gastrointestinal , Afecciones Crónicas Múltiples , Animales , Humanos , México , Encéfalo , Pueblos Indígenas , Lípidos
16.
Vet Parasitol Reg Stud Reports ; 34: 100757, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36041793

RESUMEN

Nile tilapia is the most commercially important fish in Chiapas as well as in other parts of the world. An understanding of parasite infection dynamics in tilapia may assist in applying proper prophylactic measures for reducing the loss of fish caused by parasitic diseases. Different environments and culture systems may imply different infection dynamics; therefore, the present study identified and compared the infection parameters (prevalence, mean abundance, and intensity) of parasites of Oreochromis niloticus cultured in floating cages and ponds. A total of 18 metazoan parasite taxa were recovered from gills, skin, fins and intestines of 310 specimens from floating cages and ponds. Fourteen species of parasites were found in floating cages: 8 monogenean species, 1 nematode, 1 digenea, 1 crustacea, 3 protozoans. In ponds, 16 parasite taxa were reported: 11 were monogeneans species, 4 protozoans and 1 crustacean. In both systems, monogeneans (Cichlidogyrus sclerosus, C. tilapiae, Gyrodactylus cichlidarum) and protozoans (Trichodina compacta) were most prevalent. Tilapia in ponds sustained higher parasitic infections than those in floating cages (p < 0.05). The Canonical Correspondence Analysis showed two groups: the first grouped the ponds, associated with high values of nitrite, nitrate, ammonia, conductivity, temperature, and the abundance of the ectoparasites C. halli, C. dossoui, Scutogyrus longicornis, C. sclerosus and T. compacta. The second group grouped the cages, associated with Clinostomum marginatum, Apiosoma piscicola, Lernea sp., and Contracaecum sp. and a high dissolved oxygen concentration. Our findings suggest that monitoring programs are required to improve the sanitary conditions of tilapia cultures in Chiapas.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Parásitos , Trematodos , Animales , Cíclidos/parasitología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , México/epidemiología , Estanques
17.
Front Microbiol ; 13: 979817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246214

RESUMEN

The gut microbiota is key for the homeostasis of many phytophagous insects, but there are few studies comparing its role on host use by stenophagous or polyphagous frugivores. Guava (Psidium guajava) is a fruit infested in nature by the tephritids Anastrepha striata and A. fraterculus. In contrast, the extremely polyphagous A. ludens infests guava only under artificial conditions, but unlike A. striata and the Mexican A. fraterculus, it infests bitter oranges (Citrus x aurantium). We used these models to analyze whether the gut microbiota could explain the differences in host use observed in these flies. We compared the gut microbiota of the larvae of the three species when they developed in guava and the microbiota of the fruit pulp larvae fed on. We also compared the gut microbiota of A. ludens developing in C. x aurantium with the pulp microbiota of this widely used host. The three flies modified the composition of the host pulp microbiota (i.e., pulp the larvae fed on). We observed a depletion of Acetic Acid Bacteria (AAB) associated with a deleterious phenotype in A. ludens when infesting P. guajava. In contrast, the ability of A. striata and A. fraterculus to infest this fruit is likely associated to a symbiotic interaction with species of the Komagataeibacter genus, which are known to degrade a wide spectrum of tannins and polyphenols. The three flies establish genera specific symbiotic associations with AABs. In the case of A. ludens, the association is with Gluconobacter and Acetobacter, but importantly, it cannot be colonized by Komagataeibacter, a factor likely inhibiting its development in guava.

18.
Nutrients ; 14(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36079803

RESUMEN

Gut microbiota has been suggested to modulate circulating lipids. However, the relationship between the gut microbiota and atherogenic dyslipidemia (AD), defined as the presence of both low HDL-C and hypertriglyceridemia, is not fully understood. Moreover, because obesity is among the main causes of secondary AD, it is important to analyze the effect of gut microbiota composition on lipid profiles after a weight loss intervention. We compared the microbial diversity and taxonomic composition in patients with AD (n = 41) and controls (n = 38) and sought correlations of genera abundance with serum lipid levels in 20 patients after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Gut microbiota composition was profiled using next-generation sequencing of 16S rRNA. Gut microbiota diversity was significantly lower in atherogenic dyslipidemia. Moreover, relative abundance of two genera with LDA score >3.5 (Megasphaera and LPS-producing Escherichia-Shigella), was significantly higher in AD subjects, while the abundance of four short chain fatty acids (SCFA) producing-genera (Christensenellaceae R-7, Ruminococcaceae UCG-014; Akkermansia and [Eubacterium] eligens group) was significantly higher in controls. Notably, [Eubacterium] eligens group abundance was also significantly associated with higher HDL-C levels in RYGB patients one year after surgery. Although dietary polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio and PUFA intake were higher in controls than in AD subjects, of the four genera differentiated in cases and controls, only Akkermansia abundance showed a positive and significant correlation with PUFA/SFA ratio. Our results suggest that SCFA-producing bacteria promote a healthy lipid homeostasis, while the presence of LPS-producing bacteria such Escherichia-Shigella may contribute to the development of atherogenic dyslipidemia.


Asunto(s)
Cirugía Bariátrica , Dislipidemias , Microbioma Gastrointestinal , Ácidos Grasos Volátiles , Humanos , Lipopolisacáridos , ARN Ribosómico 16S/genética , Pérdida de Peso
19.
Cell Stress Chaperones ; 26(1): 141-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902806

RESUMEN

Intrinsic protein disorder is an interesting structural feature where fully functional proteins lack a three-dimensional structure in solution. In this work, we estimated the relative content of intrinsic protein disorder in 96 plant proteomes including monocots and eudicots. In this analysis, we found variation in the relative abundance of intrinsic protein disorder among these major clades; the relative level of disorder is higher in monocots than eudicots. In turn, there is an inverse relationship between the degree of intrinsic protein disorder and protein length, with smaller proteins being more disordered. The relative abundance of amino acids depends on intrinsic disorder and also varies among clades. Within the nucleus, intrinsically disordered proteins are more abundant than ordered proteins. Intrinsically disordered proteins are specialized in regulatory functions, nucleic acid binding, RNA processing, and in response to environmental stimuli. The implications of this on plants' responses to their environment are discussed.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Adaptación Fisiológica , Bases de Datos de Proteínas , Fenómenos Fisiológicos de las Plantas , Mapas de Interacción de Proteínas , Estrés Fisiológico
20.
PeerJ ; 9: e11633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249499

RESUMEN

BACKGROUND: Biological control using entomopathogenic nematodes (EPN) has demonstrated good potential to contribute to the integral control of mosquito larvae, which as adults are vectors of diseases such as Dengue fever, Zika and Chikungunya. However, until now there are no records of the presence of EPN or their killing capacity in Yucatán state, southern México. The objectives of the current study were: (1) to report the entomopathogenic nematodes present in Yucatán soils and (2) to determine the killing capacity of the most frequent and abundant EPN against Aedes aegypti mosquito larvae and the microbial community developed by Ae. Aegypti exposed to this EPN. METHODS: The nematodes were collected by the insect trap technique using the great wax moth Galleria mellonella. Internal transcribed spacer (ITS), 28S gene of ribosomal DNA and phylogenetic analyses were performed to identify the EPN. For the bioassay, four concentrations of the most frequent and abundant EPN were tested: 1,260:1 infective juveniles (IJs) per mosquito larvae, 2,520 IJs:1, 3,780 IJs:1 and 5,040 IJs:1. High-throughput sequencing of the 16S rRNA gene was used to identify bacterial amplicon sequences in the mosquito larvae infected with EPN. RESULTS: Six isolates of Heterorhabditis were recovered from 144 soil samples. Heterorhabditis indica (four isolates) was the most frequent and abundant EPN, followed by Heterorhabditis n. sp. (two isolates). Both nematodes are reported for the first time for Yucatán state, Mexico. The concentration of 2,520 IJs:1 produced 80% of mosquito larvae mortality in 48 h. Representative members of Photorhabdus genus were numerically dominant (74%) in mosquito larvae infected by H. indica. It is most likely that these bacteria produce secondary toxic metabolites that enhance the mortality of these mosquito larvae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA