Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7981): 130-138, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730990

RESUMEN

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient's current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.


Asunto(s)
Estimulación Encefálica Profunda , Depresión , Trastorno Depresivo Mayor , Humanos , Inteligencia Artificial , Biomarcadores , Estimulación Encefálica Profunda/métodos , Depresión/fisiopatología , Depresión/terapia , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/terapia , Electrofisiología , Resultado del Tratamiento , Medición de Potencial de Campo Local , Sustancia Blanca , Lóbulo Límbico/fisiología , Lóbulo Límbico/fisiopatología , Expresión Facial
2.
Mol Psychiatry ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919403

RESUMEN

Ongoing experimental studies of subcallosal cingulate deep brain stimulation (SCC DBS) for treatment-resistant depression (TRD) show a differential timeline of behavioral effects with rapid changes after initial stimulation, and both early and delayed changes over the course of ongoing chronic stimulation. This study examined the longitudinal resting-state regional cerebral blood flow (rCBF) changes in intrinsic connectivity networks (ICNs) with SCC DBS for TRD over 6 months and repeated the same analysis by glucose metabolite changes in a new cohort. A total of twenty-two patients with TRD, 17 [15 O]-water and 5 [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) patients, received SCC DBS and were followed weekly for 7 months. PET scans were collected at 4-time points: baseline, 1-month after surgery, and 1 and 6 months of chronic stimulation. A linear mixed model was conducted to examine the differential trajectory of rCBF changes over time. Post-hoc tests were also examined to assess postoperative, early, and late ICN changes and response-specific effects. SCC DBS had significant time-specific effects in the salience network (SN) and the default mode network (DMN). The rCBF in SN and DMN was decreased after surgery, but responder and non-responders diverged thereafter, with a net increase in DMN activity in responders with chronic stimulation. Additionally, the rCBF in the DMN uniquely correlated with depression severity. The glucose metabolic changes in a second cohort show the same DMN changes. The trajectory of PET changes with SCC DBS is not linear, consistent with the chronology of therapeutic effects. These data provide novel evidence of both an acute reset and ongoing plastic effects in the DMN that may provide future biomarkers to track clinical improvement with ongoing treatment.

3.
Opt Express ; 31(11): 18265-18273, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381540

RESUMEN

A III/V-on-Bulk-Si DFB laser with a long phase shift section optimized for single-mode stability is presented. The optimized phase shift allows stable single-mode operations up to 20 times a threshold current. This mode stability is achieved by a gain difference between fundamental and higher modes maximized by sub-wavelength-scale tuning of the phase shift section. In SMSR-based yield analyses, the long-phase-shifted DFB laser showed superior performance compared to the conventional λ/4-phase-shifted ones.

4.
J Neurosci Res ; 99(11): 2922-2931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34521154

RESUMEN

The pons is one of the earliest affected regions in patients with synucleinopathies. We aimed to investigate the diagnostic value of measuring pontine damage using diffusion tensor imaging (DTI) in these patients. We enrolled 49 patients with Parkinson's disease (PD), 16 patients with idiopathic rapid eye movement sleep behavior disorder (iRBD), 23 patients with multiple system atrophy (MSA), and 39 healthy controls in this study. All the participants underwent high-resolution T1-weighted imaging and DTI. Mean diffusivity (MD) and fraction anisotropy (FA) values in the pons were calculated to characterize structural damage. The discriminatory power of pontine MD and FA values to differentiate patients with synucleinopathies from healthy controls was examined using receiver operating characteristics (ROC) analyses. Compared to healthy controls, patients with PD, iRBD, and MSA had increased MD values and decreased FA values in the pons, although no correlation was observed between these DTI measures and disease severity. The ROC analyses showed that MD values in the pons had a fair discriminatory power to differentiate healthy controls from patients with PD (area under the curve [AUC], 0.813), iRBD (AUC, 0.779), and MSA (AUC, 0.951). The AUC for pontine FA values was smaller than that for pontine MD values when differentiating healthy controls from patients with PD (AUC, 0.713; p = 0.054) and iRBD (AUC, 0.686; p = 0.045). Our results suggest that MD values in the pons may be a useful marker of brain stem neurodegeneration in patients with synucleinopathies.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Anisotropía , Imagen de Difusión Tensora/métodos , Humanos , Puente/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Sinucleinopatías/diagnóstico por imagen
5.
Korean J Physiol Pharmacol ; 24(1): 81-88, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31908577

RESUMEN

Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, real-time reverse transcriptase-polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.

6.
Eur J Nucl Med Mol Imaging ; 46(8): 1652-1660, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30980099

RESUMEN

PURPOSE: Little is known regarding the clinical relevance or neurobiology of subtle motor disturbance in Alzheimer's disease (AD). This study aims to investigate the patterns of striatal 18F-FP-CIT uptake in patients with AD-related cognitive impairment (ADCI) with mild parkinsonism. METHODS: We recruited 29 consecutive patients with ADCI with mild parkinsonism. All patients underwent 18F-FP-CIT PET scans and dopamine transporter (DAT) availability in striatal subregions (anterior/posterior caudate, anterior/posterior putamen, ventral putamen, ventral striatum) was quantified. Additionally, 32 patients with dementia with Lewy bodies (DLB) and 21 healthy controls were included to perform inter-group comparative analyses of the striatal DAT availability. The discriminatory power of striatal DAT availability to differentiate ADCI from DLB was assessed using receiver operating characteristics (ROC) analyses. The Spearman's correlation coefficient was calculated to assess the relationship between motor severity and DAT availability in striatal subregions. RESULTS: Patients with ADCI with mild parkinsonism exhibited decreased DAT availability in the caudate that was intermediate between healthy controls and patients with DLB. The DAT availability in other striatal subregions, including the posterior putamen, did not differ between the ADCI with parkinsonism and healthy control groups. The ROC analysis showed that DAT availability of all striatal subregions, especially the whole striatum, had a fair discriminatory power. Parkinsonian motor severity did not correlate with the striatal DAT availability in ADCI with parkinsonism. CONCLUSIONS: The present study demonstrated that patients with ADCI with mild parkinsonism had distinct DAT scan patterns and suggests that parkinsonism is associated with the extranigral source of pathology.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Anciano , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/normas , Radiofármacos , Sensibilidad y Especificidad , Tropanos
7.
Opt Express ; 26(11): 14768-14774, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877412

RESUMEN

An O-band DFB laser heterogeneously integrated on bulk-silicon platform is presented. A high wall plug efficiency of over 8% up to 70°C is achieved due to efficient heat dissipation from III/V active region to silicon platform. The single-mode operation is maintained in a wide current range with side-mode suppression ratio over 45dB. This result completes the optical device library suite for the bulk-silicon platform used in most semiconductor products.

8.
Hum Brain Mapp ; 38(6): 2808-2818, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28294456

RESUMEN

Based on cytoarchitecture, the posterior cingulate cortex (PCC) is thought to be comprised of two distinct functional subregions: the dorsal and ventral PCC (dPCC and vPCC). However, functional subregions do not completely match anatomical boundaries in the human brain. To understand the relationship between the functional organization of regions and anatomical features, it is necessary to apply parcellation algorithms based on functional properties. We therefore defined functionally informed subregions in the human PCC by parcellation of regions with similar patterns of functional connectivity in the resting brain. We used various patterns of functional connectivity, namely local, whole-brain and diffuse functional connections of the PCC, and various clustering methods, namely hierarchical, spectral, and k-means clustering to investigate the subregions of the PCC. Overall, the approximate anatomical boundaries and predicted functional regions were highly overlapped to each other. Using hierarchical clustering, the PCC could be clearly separated into two anatomical subregions, namely the dPCC and vPCC, and further divided into four subregions segregated by local functional connectivity patterns. We show that the PCC could be separated into two (dPCC and vPCC) or four subregions based on local functional connections and hierarchical clustering, and that subregions of PCC display differential global functional connectivity, particularly along the dorsal-ventral axis. These results suggest that differences in functional connectivity between dPCC and vPCC may be due to differences in local connectivity between these functionally hierarchical subregions of the PCC. Hum Brain Mapp 38:2808-2818, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo/anatomía & histología , Giro del Cíngulo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Algoritmos , Análisis por Conglomerados , Femenino , Lateralidad Funcional/fisiología , Giro del Cíngulo/fisiología , Humanos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Adulto Joven
9.
Neuroimage ; 119: 296-304, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26143204

RESUMEN

As an indicator of synchronous neural activity, resting-state functional networks are influenced by neuropathological and neurochemical changes in degenerative diseases. To further advance understanding about neurochemical and neuropathological basis for resting-state functional maps, we performed a comparative analysis of resting-state functional connectivity in patients with Parkinson's disease (PD) and drug induced parkinsonism (DIP). Resting-state neuroimaging data were analyzed with a seed-based approach to investigate striatocortical functional connectivity and cortical functional connectivity within the default mode network, executive control network, and the dorsal attention network. The striatal subregions were divided into the more or less affected sides in terms of dopamine transporter uptake. Compared with DIP, PD exhibited an increased cerebellar connectivity from the more affected side of the caudate and the less affected sides of the anterior and the posterior putamen. Additionally, PD showed increased functional connectivity in the anterior prefrontal areas from the more affected side of the anterior putamen and from the less affected side of the posterior putamen. However, PD exhibited decreased cortical functional connectivity from the posterior cingulate cortex in the left temporal area. Finally, DIP patients showed decreased cortical functional connectivity from the dorsolateral prefrontal cortex in frontal and parietal areas compared with PD patients. In summary, the present study demonstrates that PD patients exhibited a unique resting state functional connectivity that may be associated with PD-related pathological changes beyond the dopaminergic system, whereas DIP patients showed altered functional connectivity within executive control network.


Asunto(s)
Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/fisiopatología , Anciano , Mapeo Encefálico , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson Secundaria/diagnóstico por imagen , Enfermedad de Parkinson Secundaria/metabolismo , Tomografía de Emisión de Positrones , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo , Tropanos
10.
Hum Brain Mapp ; 36(5): 1716-27, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25640661

RESUMEN

Olfactory performance in Parkinson's disease (PD) is closely associated with subsequent cognitive decline. In the present study, we analyzed the olfaction-dependent functional connectivity with a hypothesis that olfactory performance would influence functional connectivity within key brain areas of PD. A total of 110 nondemented drug-naïve patients with PD were subdivided into three groups of high score (PD-H, n = 23), middle score (PD-M, n = 64), and low score (PD-L, n = 23) based on olfactory performance. We performed the resting-state functional connectivity with seed region of interest in the posterior cingulate cortex (PCC) and caudate. An analysis of functional connectivity revealed that PD-L patients exhibited a significant attenuation of cortical functional connectivity with the PCC in the bilateral primary sensory areas, right frontal areas, and right parietal areas compared to PD-H or PD-M patients. Meanwhile, PD-L patients exhibited a significant enhancement of striatocortical functional connectivity in the bilateral occipital areas and right frontal areas compared to PD-H or PD-M patients. In the voxel-wise correlation analysis, olfactory performance was positively associated with cortical functional connectivity with the PCC in similar areas of attenuated cortical connectivity in PD-L patients relative to PD-H patients. On the other hand, the cortical functional connectivity with the caudate was negatively correlated with olfactory performance in similar areas of increased connectivity in PD-L patients relative to PD-H patients. The present study demonstrated that resting state functional connectivity exhibits a distinctive pattern depending on olfactory performance, which might shed light on a meaningful relationship between olfactory impairment and cognitive dysfunction in PD.


Asunto(s)
Encéfalo/fisiopatología , Percepción Olfatoria/fisiología , Enfermedad de Parkinson/fisiopatología , Anciano , Encéfalo/patología , Mapeo Encefálico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Enfermedad de Parkinson/patología , Descanso
11.
Hum Brain Mapp ; 35(11): 5431-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24938993

RESUMEN

Parkinson's disease (PD) is characterized by degenerative changes of nigral dopamine neurons, resulting in the dopaminergic denervation of the striatum. Resting state networks studies have demonstrated that dopamine modulates distinct network connectivity patterns in both a linear and a nonlinear fashion, but quantitative analyses of dopamine-dependent functional connectivity secondary to PD pathology were less informative. In the present study, we performed a correlation analysis between striatal dopamine levels assessed quantitatively by FP-CIT positron emission tomography imaging and resting-state functional connectivity in 23 drug naïve de novo patients with PD to elucidate dopamine-dependent functional networks. The major finding is that the patterns of dopamine-dependent positive functional connectivity varied depending on the location of striatal seeds. Dopamine-dependent functional connectivity with the caudate predominantly overlay pericentral cortical areas, whereas dopamine-dependent structures functionally connected with the posterior putamen predominantly involved cerebellar areas. The dorsolateral frontal area overlapped as a dopamine-dependent cortical region that was positively connected with the anterior and posterior putamen. On the other hand, cortical areas where functional connectivity from the posterior cingulate was negatively correlated with dopaminergic status in the posterior putamen were localized in the left anterior prefrontal area and the parietal area. Additionally, functional connectivity between the anterior putamen and mesiofrontal areas was negatively coupled with striatal dopamine levels. The present study demonstrated that dopamine-dependent functional network connectivity secondary to PD pathology mainly exhibits a consistent pattern, albeit with some variation. These patterns may reflect the diverse effects of dopaminergic medication on parkinsonian-related motor and cognitive performance.


Asunto(s)
Encéfalo/patología , Dopamina/metabolismo , Vías Nerviosas/fisiología , Descanso , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/diagnóstico por imagen , Oxígeno/sangre , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Tomografía de Emisión de Positrones , Estadística como Asunto , Tropanos
12.
JCI Insight ; 9(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193536

RESUMEN

Prolonged seizures can disrupt stem cell behavior in the adult hippocampus, an important brain structure for spatial memory. Here, using a mouse model of pilocarpine-induced status epilepticus (SE), we characterized spatiotemporal expression of Lin28a mRNA and proteins after SE. Unlike Lin28a transcripts, induction of LIN28A protein after SE was detected mainly in the subgranular zone, where immunoreactivity was found in progenitors, neuroblasts, and immature and mature granule neurons. To investigate roles of LIN28A in epilepsy, we generated Nestin-Cre:Lin28aloxP/loxP (conditional KO [cKO]) and Nestin-Cre:Lin28a+/+ (WT) mice to block LIN28A upregulation in all neuronal lineages after acute seizure. Adult-generated neuron- and hippocampus-associated cognitive impairments were absent in epileptic LIN28A-cKO mice, as evaluated by pattern separation and contextual fear conditioning tests, respectively, while sham-manipulated WT and cKO animals showed comparable memory function. Moreover, numbers of hilar PROX1-expressing ectopic granule cells (EGCs), together with PROX1+/NEUN+ mature EGCs, were significantly reduced in epileptic cKO mice. Transcriptomics analysis and IHC validation at 3 days after pilocarpine administration provided potential LIN28A downstream targets such as serotonin receptor 4. Collectively, our findings indicate that LIN28A is a potentially novel target for regulation of newborn neuron-associated memory dysfunction in epilepsy by modulating seizure-induced aberrant neurogenesis.


Asunto(s)
Epilepsia , Estado Epiléptico , Animales , Nestina/genética , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Estado Epiléptico/genética , Hipocampo , Neurogénesis
13.
NPJ Parkinsons Dis ; 10(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172188

RESUMEN

Patients with dementia with Lewy bodies (DLB) show widespread brain metabolic changes. This study investigated whether brain hypo- and hypermetabolism in DLB have differential effects on cognition. We enrolled 55 patients with DLB (15 prodromal DLB [MCI-LB] and 40 probable DLB) and 13 healthy controls who underwent 18F-fluorodeoxyglucose positron emission tomography and detailed neuropsychological tests. Metabolic indices reflecting associated changes in regional cerebral glucose metabolism were calculated as follows: index(-) for hypometabolism [DLB-hypo] and index(+) for hypermetabolism [DLB-hyper]. The effects of DLB-hypo or DLB-hyper on cognitive function were assessed using a multivariate linear regression model. Additionally, a linear mixed model was used to investigate the association between each index and the longitudinal cognitive decline. There was no correlation between DLB-hypo and DLB-hyper in the disease group. The multivariate linear regression model showed that DLB-hypo was associated with language, visuospatial, visual memory, and frontal/executive functions; whereas DLB-hyper was responsible for attention and verbal memory. There was significant interaction between DLB-hypo and DLB-hyper for verbal and visual memory, which was substantially affected by DLB-hyper in relatively preserved DLB-hypo status. A linear mixed model showed that DLB-hypo was associated with longitudinal cognitive outcomes, regardless of cognitive status, and DLB-hyper contributed to cognitive decline only in the MCI-LB group. The present study suggests that DLB-hypo and DLB-hyper may be independent of each other and differentially affect the baseline and longitudinal cognitive function in patients with DLB.

14.
Aging Dis ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38300638

RESUMEN

As a part of the glymphatic system, the choroid plexus (CP) is involved in the clearance of harmful metabolites from the brain. We investigated the association between CP volume (CPV), amyloid-ß (Aß) burden, and cognition in patients on the Alzheimer's disease (AD) continuum. We retrospectively reviewed the records of 203 patients on the AD continuum and 82 healthy controls who underwent brain magnetic resonance imaging and 18F-florbetaben positron emission tomography. Automatic segmentation was performed, and the CPV was calculated. Cognitive function was assessed using detailed neuropsychological tests, and patients on the AD continuum were categorized into the non-dementia and dementia groups. The relationships between CPV, Aß burden, and cognitive function were assessed using multivariate linear regression and linear mixed model. CPV was greater in the AD group than in the healthy control group (1.50 vs. 1.30, P < 0.001), but was comparable between the AD non-dementia and dementia groups (1.50 vs. 1.48, P = 0.585). After adjusting for age and sex, a larger CPV was significantly associated with greater global Aß deposition (ß = 0.20, P = 0.002). Larger CPV was also associated with worse general cognitive function assessed using the sum of boxes of the clinical dementia rating scale (ß = 0.85, P = 0.034) and lower composite scores for memory (ß = -0.68, P = 0.002) and frontal/executive function domains (ß = -0.65, P < 0.001). In addition, a larger CPV was associated with a more rapid decline in Mini-Mental State Examination scores in the AD dementia group (ß = -0.58, P = 0.004). The present study demonstrated that CP enlargement was associated with increased Aß deposition and impaired memory and frontal/executive function in patients on the AD continuum.

15.
Eur J Neurosci ; 37(12): 1916-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23773060

RESUMEN

Most default mode network (DMN) studies in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) are based on the comparison of only two groups, namely patients and controls. Information derived from comparing three groups, normal, aMCI and AD, simultaneously may lead us to better understand the progression of dementia. The purpose of this study was to evaluate functional connectivity of DMN in the continuum from normal through aMCI to AD. Differences in functional connectivity were compared between the three groups using independent component analysis. The relationship between functional connectivity and disease progression was investigated using multiple regression analysis with Mini-Mental State Examination (MMSE) scores. The results revealed differences throughout the left posterior cingulate cortex (PCC), left middle temporal gyrus (MTG), right middle frontal gyrus (MFG) and bilateral parahippocampal gyrus (PHG). Both patients with aMCI and those with AD showed decreased connectivity in the left PCC and left PHG compared with healthy subjects. Furthermore, patients with AD also showed decreased connectivity in the left MTG and right PHG. Increased functional connectivity was observed in the right MFG of patients with AD compared with other groups. MMSE scores exhibited significant positive and negative correlations with functional connectivity in PCC, MTG and MFG regions. Taken together, increased functional connectivity in the MFG for AD patients might compensate for the loss of function in the PCC and MTG via compensatory mechanisms in corticocortical connections.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/fisiopatología , Amnesia/fisiopatología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Anciano , Anciano de 80 o más Años , Encéfalo/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa
16.
Res Sq ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398243

RESUMEN

Ongoing experimental studies of subcallosal cingulate deep brain stimulation (SCC DBS) for treatment-resistant depression (TRD) show a differential timeline of behavioral effects with rapid changes after initial stimulation, and both early and delayed changes over the course of ongoing chronic stimulation. This study examined the longitudinal resting-state regional cerebral blood ow (rCBF) changes in intrinsic connectivity networks (ICNs) with SCC DBS for TRD over 6 months and repeated the same analysis by glucose metabolite changes in a new cohort. A total of twenty-two patients with TRD, 17 [15O]-water and 5 [18]-Fluorodeoxyglucose (FDG) positron emission tomography (PET) patients, received SCC DBS and were followed weekly for 7 months. PET scans were collected at 4-time points: baseline, 1-month after surgery, and 1 and 6 months of chronic stimulation. A linear mixed model was conducted to examine the differential trajectory of rCBF changes over time. Post-hoc tests were also examined to assess postoperative, early, and late ICN changes and response-specific effects. SCC DBS had significant time-specific effects in the salience network (SN) and the default mode network (DMN). The rCBF in SN and DMN was decreased after surgery, but responder and non-responders diverged thereafter, with a net increase in DMN activity in responders with chronic stimulation. Additionally, the rCBF in the DMN uniquely correlated with depression severity. The glucose metabolic changes in a second cohort show the same DMN changes. The trajectory of PET changes with SCC DBS is not linear, consistent with the chronology of therapeutic effects. These data provide novel evidence of both an acute reset and ongoing plastic effects in the DMN that may provide future biomarkers to track clinical improvement with ongoing treatment.

17.
Neuropsychopharmacology ; 48(13): 1901-1909, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37491672

RESUMEN

Recurrent episodes in major depressive disorder (MDD) are common but the neuroimaging features predictive of recurrence are not established. Participants in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study who achieved remission after 12 weeks of treatment withcognitive behavior therapy, duloxetine, or escitalopram were prospectively monitored for up to 21 months for recurrence. Neuroimaging markers predictive of recurrence were identified from week 12 functional magnetic resonance imaging scans by analyzing whole-brain resting state functional connectivity (RSFC) using seeds for four brain networks that are altered in MDD. Neuroimaging correlates of established clinical predictors of recurrence, including the magnitude of depressive (Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale) symptom severity at time of remission, and a comorbid anxiety disorder were examined for their similarity to the neuroimaging predictors of recurrence. Of the 344 patients randomized in PReDICT, 61 achieved remission and had usable scans for analysis, 9 of whom experienced recurrence during follow-up. Recurrence was predicted by: 1) increased RSFC between subcallosal cingulate cortex (SCC) and right anterior insula, 2) decreased RSFC between SCC and bilateral primary visual cortex, and 3) decreased RSFC between insula and bilateral caudate. Week 12 depression and anxiety scores were negatively correlated with RSFC strength between executive control and default mode networks, but they were not correlated with the three RSFC patterns predicting recurrence. We conclude that altered RSFC in SCC and anterior insula networks are prospective risk factors associated with MDD recurrence, reflecting additional sources of risk beyond clinical measures.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/patología , Estudios Prospectivos , Encéfalo , Clorhidrato de Duloxetina , Mapeo Encefálico , Imagen por Resonancia Magnética
18.
Front Aging Neurosci ; 15: 1196602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614472

RESUMEN

Introduction: Concomitant amyloid pathology is not uncommon and contributes to the clinical characteristics of Lewy body disease (LBD). We investigated the effect of amyloid on striatal18F-FP-CIT uptake patterns in LBD, including Parkinson's disease (PD) and dementia with Lewy bodies. Methods: We enrolled 125 patients with LBD who underwent18F-florbetaben positron emission tomography (PET) and18F-FP-CIT PET. Patients were divided into amyloid-positive and amyloid-negative groups. We investigated the effect of amyloid on striatal dopamine transporter (DAT) availability, depending on the type of LBD, using general linear models with interaction analysis after controlling for age, sex, education, deep white matter hyperintensity (WMH), periventricular WMH, and cognitive status. Results: There was a significant interaction effect between the disease group and the presence of amyloid on DAT availability in the anterior putamen, posterior putamen, caudate, and ventral striatum. In the presence of amyloid, only the PD group exhibited decreased DAT availability in the anterior and posterior putamen. In both groups, the presence of amyloid was not associated with DAT availability in the caudate and ventral striatum. The presence of amyloid was not directly related to the worse parkinsonian motor symptoms in both groups. However, there was a significant indirect effect of amyloid on parkinsonian motor symptoms, which was mediated by anterior and posterior putaminal DAT availability in the PD group alone. Discussion: This study demonstrates different amyloid-dependent or amyloid-independent18F-FP-CIT PET patterns in patients with LBD, suggesting distinctive interactions between α-synuclein and amyloid pathology based on the type of LBD.

19.
J Alzheimers Dis ; 94(3): 1133-1144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355901

RESUMEN

BACKGROUND: Clinical significance of additional occipital amyloid-ß (Aß) plaques in Alzheimer's disease (AD) remains unclear. OBJECTIVE: In this study, we investigated the effect of regional Aß deposition on cognition in patients on the AD continuum, especially in the occipital region. METHODS: We retrospectively reviewed the medical record of 208 patients with AD across the cognitive continuum (non-dementia and dementia). Multivariable linear regression analyses were performed to determine the effect of regional Aß deposition on cognitive function. A linear mixed model was used to assess the effect of regional deposition on longitudinal changes in Mini-Mental State Examination (MMSE) scores. Additionally, the patients were dichotomized according to the occipital-to-global Aß deposition ratio (ratio ≤1, Aß-OCC- group; ratio >1, Aß-OCC+ group), and the same statistical analyses were applied for between-group comparisons. RESULTS: Regional Aß burden itself was not associated with baseline cognitive function. In terms of Aß-OCC group effect, the Aß-OCC+ group exhibited a poorer cognitive performance on language function compared to the Aß-OCC- group. High Aß retention in each region was associated with a rapid decline in MMSE scores, only in the dementia subgroup. Additionally, Aß-OCC+ individuals exhibited a faster annual decline in MMSE scores than Aß-OCC- individuals in the non-dementia subgroup (ß= -0.77, standard error [SE] = 0.31, p = 0.013). CONCLUSION: The present study demonstrated that additional occipital Aß deposition was associated with poor baseline language function and rapid cognitive deterioration in patients on the AD continuum.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/psicología , Estudios Retrospectivos , Tomografía de Emisión de Positrones , Péptidos beta-Amiloides
20.
Am J Psychiatry ; 180(3): 218-229, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651624

RESUMEN

OBJECTIVE: The authors sought to determine the shared and unique changes in brain resting-state functional connectivity (rsFC) between patients with major depressive disorder who achieved remission with cognitive-behavioral therapy (CBT) or with antidepressant medication. METHODS: The Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) trial randomized adults with treatment-naive major depressive disorder to 12 weeks of treatment with CBT (16 1-hour sessions) or medication (duloxetine 30-60 mg/day or escitalopram 10-20 mg/day). Resting-state functional MRI scans were performed at baseline and at week 12. The primary outcome was change in the whole-brain rsFC of four seeded brain networks among participants who achieved remission. RESULTS: Of the 131 completers with usable MRI data (74 female; mean age, 39.8 years), remission was achieved by 19 of 40 CBT-treated and 45 of 91 medication-treated patients. Three patterns of connectivity changes were observed. First, those who remitted with either treatment shared a pattern of reduction in rsFC between the subcallosal cingulate cortex and the motor cortex. Second, reciprocal rsFC changes were observed across multiple networks, primarily increases in CBT remitters and decreases in medication remitters. And third, in CBT remitters only, rsFC increased within the executive control network and between the executive control network and parietal attention regions. CONCLUSIONS: Remission from major depression via treatment with CBT or medication is associated with changes in rsFC that are mostly specific to the treatment modality, providing biological support for the clinical practice of switching between or combining these treatment approaches. Medication is associated with broadly inhibitory effects. In CBT remitters, the increase in rsFC strength between networks involved in cognitive control and attention provides biological support for the theorized mechanism of CBT. Reducing affective network connectivity with motor systems is a shared process important for remission with both CBT and medication.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Femenino , Humanos , Antidepresivos/uso terapéutico , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Clorhidrato de Duloxetina/uso terapéutico , Escitalopram , Imagen por Resonancia Magnética , Psicoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA