Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 204(3): 613-624, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400948

RESUMEN

When wintering at different sites, individuals from the same breeding population can experience different conditions, with costs and benefits that may have implications throughout their lifetime. Using a dataset from a longitudinal study on Eurasian Spoonbills from southern France, we explored whether survival rate varied among individuals using different wintering sites. In the last 13 years, more than 3000 spoonbills have been ringed as chicks in Camargue. These birds winter in five main regions that vary in both migratory flyway (East Atlantic vs. Central European) and migration distance (long-distance vs. short-distance vs. resident). We applied Cormack-Jolly-Seber models and found evidence for apparent survival to correlate with migration distance, but not with flyway. During the interval between the first winter sighting and the next breeding period, long-distance migrants had the lowest survival, independently of the flyway taken. Additionally, as they age, spoonbills seem to better cope with migratory challenges and wintering conditions as no differences in apparent survival among wintering strategies were detected during subsequent years. As dispersal to other breeding colonies was rarely observed, the lower apparent survival during this period is likely to be partly driven by lower true survival. This supports the potential role of crossing of natural barriers and degradation of wintering sites in causing higher mortality rates as recorded for a variety of long-distance migrants. Our work confirms variation in demographic parameters across winter distribution ranges and reinforces the importance of longitudinal studies to better understand the complex demographics of migratory species.


Asunto(s)
Migración Animal , Aves , Humanos , Animales , Estudios Longitudinales , Francia , Estaciones del Año
2.
Reg Environ Change ; 21(2): 33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776560

RESUMEN

Wetlands are critically important for biodiversity and human wellbeing, but face a range of challenges. This is especially true in the Mediterranean region, where wetlands support endemic and threatened species and remain integral to human societies, but have been severely degraded in recent decades. Here, in order to raise awareness of future challenges and opportunities for Mediterranean wetlands, and to inform proactive research and management, we identified (a) 50 key issues that might affect Mediterranean wetlands between 2020 and 2050, and (b) 50 important research questions that, if answered, would have the greatest impact on the conservation of Mediterranean wetlands between 2020 and 2050. We gathered ideas through an online survey and review of recent literature. A diverse assessment panel prioritised ideas through an iterative, anonymised, Delphi-like process of scoring, voting and discussion. The prioritised issues included some that are already well known but likely to have a large impact on Mediterranean wetlands in the next 30 years (e.g. the accumulation of dams and reservoirs, plastic pollution and weak governance), and some that are currently overlooked in the context of Mediterranean wetlands (e.g. increasing desalination capacity and development of antimicrobial resistance). Questions largely focused on how best to carry out conservation interventions, or understanding the impacts of threats to inform conservation decision-making. This analysis will support research, policy and practice related to environmental conservation and sustainable development in the Mediterranean, and provides a model for similar analyses elsewhere in the world. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-020-01743-1.

3.
Ecology ; 99(5): 1063-1072, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29714830

RESUMEN

Understanding and modeling population change is urgently needed to predict effects of climate change on biodiversity. High trophic-level organisms are influenced by fluctuations of prey quality and abundance, which themselves may depend on climate oscillations. Modeling effects of such fluctuations is challenging because prey populations may vary with multiple climate oscillations occurring at different time scales. The analysis of a 28-yr time series of capture-recapture data of a tropical seabird, the Nazca Booby (Sula granti), in the Galápagos, Ecuador, allowed us to test for demographic effects of two major ocean oscillations occurring at distinct time-scales: the inter-annual El Niño Southern Oscillation (ENSO) and inter-decadal oscillations. As expected for a tropical seabird, survival of fledgling birds was highly affected by extreme ENSO events; by contrast, neither recruitment nor breeding participation were affected by either ENSO or decadal oscillations. More interesting, adult survival, a demographic trait that canalizes response to environmental variations, was unaffected by inter-annual ENSO oscillations yet was shaped by the Pacific Decadal Oscillation and small pelagic fish regime. Adult survival decreased during oceanic conditions associated with higher breeding success, an association probably mediated in this species by costs of reproduction that reduce survival when breeding attempts end later. To our knowledge, this is the first study suggesting that survival of a vertebrate can be vulnerable to a natural multidecadal oscillation.


Asunto(s)
Cambio Climático , El Niño Oscilación del Sur , Animales , Aves , Ecuador , Océanos y Mares , Océano Pacífico
4.
Ecol Evol ; 12(4): e8835, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35475190

RESUMEN

Assessing trends in the relative abundance of populations is a key yet complex issue for management and conservation. This is a major aim of many large-scale censusing schemes such as the International Waterbird Count (IWC). However, owing to the lack of sampling strategy and standardization, such schemes likely suffer from biases due to spatial heterogeneity in sampling effort. Despite huge improvements of the statistical tools that allow tackling these statistical issues (e.g., GLMM, Bayesian inference), many conservationists still prefer to rely on stand-alone turn-key statistical tools, often violating the prerequisites put forward by the developers of these tools. Here, we propose a straightforward and flexible approach to tackle the typical statistical issues one can encounter when analyzing count data of monitoring schemes such as the IWC. We rely on IWC counts of the declining common pochard populations of the Northwest European flyway as a case study (period 2002-2012). To standardize the size of sampling units and mitigate spatial autocorrelation, we grouped sampling sites using a 75 × 75 km grid cells overlaid over the flyway of interest. Then, we used a hierarchical modeling approach, assessing population trends with random effects at two spatial scales (grid cells, and sites within grid cells) in order to derive spatialized values and to compute the average population trend at the whole flyway scale. Our approach allowed to tackle many statistical issues inherent to this type of analysis but often neglected, including spatial autocorrelation. Concerning the case study, our main findings are that: (1) the northwestern population of common pochards experienced a steep decline (4.9% per year over the 2002-2012 period); (2) the decline was more pronounced at high than low latitude (11.6% and 0.5% per year at 60° and 46° of latitude, respectively); and, (3) the decline was independent of the initial number of individuals in a given site (random across sites). Beyond the case study of the common pochard, our study provides a conceptual statistical framework for estimating and assessing potential drivers of population trends at various spatial scales.

5.
PLoS One ; 17(3): e0265730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35333894

RESUMEN

In the context of wildlife population declines, increasing computer power over the last 20 years allowed wildlife managers to apply advanced statistical techniques that has improved population size estimates. However, respecting the assumptions of the models that consider the probability of detection, such as N-mixture models, requires the implementation of a rigorous monitoring protocol with several replicate survey occasions and no double counting that are hardly adaptable to field conditions. When the logistical, economic and ecological constraints are too strong to meet model assumptions, it may be possible to combine data from independent surveys into the modelling framework in order to understand population dynamics more reliably. Here, we present a state-space model with an error process modelled on the log scale to evaluate wintering waterfowl numbers in the Camargue, southern France, while taking a conditional probability of detection into consideration. Conditional probability of detection corresponds to estimation of a detection probability index, which is not a true probability of detection, but rather conditional on the difference to a particular baseline. The large number of sites (wetlands within the Camargue delta) and years monitored (44) provide significant information to combine both terrestrial and aerial surveys (which constituted spatially and temporally replicated counts) to estimate a conditional probability of detection, while accounting for false-positive counting errors and changes in observers over the study period. The model estimates abundance indices of wintering Common Teal, Mallard and Common Coot, all species abundant in the area. We found that raw counts were underestimated compared to the predicted population size. The model-based data integration approach as described here seems like a promising solution that takes advantage of as much as possible of the data collected from several methods when the logistic constraints do not allow the implementation of a permanent monitoring and analysis protocol that takes into account the detectability of individuals.


Asunto(s)
Animales Salvajes , Aves , Animales , Humanos , Densidad de Población , Dinámica Poblacional , Probabilidad
6.
Ecol Evol ; 12(9): e9285, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188522

RESUMEN

Selective hunting has various impacts that need to be considered for the conservation and management of harvested populations. The consequences of selective harvest have mostly been studied in trophy hunting and fishing, where selection of specific phenotypes is intentional. Recent studies, however, show that selection can also occur unintentionally. With at least 52 million birds harvested each year in Europe, it is particularly relevant to evaluate the selectivity of hunting on this taxon. Here, we considered 211,806 individuals belonging to 7 hunted bird species to study unintentional selectivity in harvest. Using linear mixed models, we compared morphological traits (mass, wing, and tarsus size) and body condition at the time of banding between birds that were subsequently recovered from hunting during the same year as their banding, and birds that were not recovered. We did not find any patterns showing systematic differences between recovery categories, among our model species, for the traits we studied. Moreover, when a difference existed between recovery categories, it was so small that its biological relevance can be challenged. Hunting of birds in Europe therefore does not show any form of strong selectivity on the morphological and physiological traits that we studied and should hence not lead to any change of these traits either by plastic or by evolutionary response.

7.
Ecol Evol ; 11(5): 2249-2260, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717452

RESUMEN

Population time series analysis is an integral part of conservation biology in the current context of global changes. To quantify changes in population size, wildlife counts only provide estimates because of various sources of error. When unaccounted for, such errors can obscure important ecological patterns and reduce confidence in the derived trend. In the case of highly gregarious species, which are common in the animal kingdom, the estimation of group size is an important potential bias, which is characterized by high variance among observers. In this context, it is crucial to quantify the impact of observer changes, inherent to population monitoring, on i) the minimum length of population time series required to detect significant trends and ii) the accuracy (bias and precision) of the trend estimate.We acquired group size estimation error data by an experimental protocol where 24 experienced observers conducted counting simulation tests on group sizes. We used this empirical data to simulate observations over 25 years of a declining population distributed over 100 sites. Five scenarios of changes in observer identity over time and sites were tested for each of three simulated trends (true population size evolving according to deterministic models parameterized with declines of 1.1%, 3.9% or 7.4% per year that justify respectively a "declining," "vulnerable" or "endangered" population under IUCN criteria).We found that under realistic field conditions observers detected the accurate value of the population trend in only 1.3% of the cases. Our results also show that trend estimates are similar if many observers are spatially distributed among the different sites, or if one single observer counts all sites. However, successive changes in observer identity over time lead to a clear decrease in the ability to reliably estimate a given population trend, and an increase in the number of years of monitoring required to adequately detect the trend.Minimizing temporal changes of observers improve the quality of count data and help taking appropriate management decisions and setting conservation priorities. The same occurs when increasing the number of observers spread over 100 sites. If the population surveyed is composed of few sites, then it is preferable to perform the survey by one observer. In this context, it is important to reconsider how we use estimated population trend values and potentially to scale our decisions according to the direction and duration of estimated trends, instead of setting too precise threshold values before action.

8.
Ambio ; 39(2): 170-80, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20653279

RESUMEN

Animal populations are exposed to large-scale anthropogenic impact from, e.g., climate change, habitat alteration and supplemental stocking. All of these may affect body condition in wintering dabbling ducks, which in turn may affect an individual's survival and reproductive success. The aim of this study was to assess whether there have been morphometric changes in Mallard (Anas platyrhynchos) and Teal (Anas crecca) over the last 30 years at a major wintering site. Body mass and condition increased from the 1950s-1960s to the 2000s in both species. The increase in body mass amounted to as much as 11.7%, with no corresponding change in body size. Improved body condition was maintained from early to mid-winter, but then converged with historical values for late winter. Our interpretation is that increasingly benign ambient winter conditions permit ducks to maintain better energetic "safety margins" throughout winter, and that converging spring departure values may be related to evolutionary flight energetic optima. The observed changes are consistent with large-scale climate amelioration and local/regional habitat improvement (both anthropogenic).


Asunto(s)
Composición Corporal/fisiología , Peso Corporal/fisiología , Patos/fisiología , Animales , Cambio Climático , Femenino , Francia , Masculino , Estaciones del Año
9.
PeerJ ; 7: e7844, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616597

RESUMEN

BACKGROUND: Long-term research is crucial for the conservation and development of knowledge in ecology; however, it is essential to quantify and minimize any negative effects associated with research to gather reliable and representative long-term monitoring data. In colonial bird species, chicks are often marked with coded bands in order to assess demographic parameters of the population. Banding chicks in multi-species colonies is challenging because it involves disturbances to species that are at different stages of progress in their reproduction. METHODS: We took advantage of a long term banding program launched on Glossy Ibis (Plegadis falcinellus) breeding in a major mixed colony of herons in Camargue, southern France, to assess the effect of banding operation disturbance on the reproductive success of the three most numerous waterbirds species in the colony. Over two breeding seasons (2015 and 2016), 336 nests of Glossy Ibis, Little Egrets (Egretta garzetta) and Cattle Egrets (Bubulcus ibis) were monitored from a floating blind in two zones of the colony: one zone disturbed twice a year by the banding activities and another not disturbed (control zone). We applied a logistic-exposure analysis method to estimate the daily survival rate (DSR) of nests and chicks aged up to three weeks. RESULTS: Daily survival rate of Glossy Ibis was reduced in the disturbed zone while DSR increased for Little and Cattle Egrets in the disturbed zone. Nevertheless, DSR was not reduced on the week following the banding, thus discarding a direct effect of handling on breeding success of Glossy Ibis. The protocol and statistical analysis presented here are robust and can be applied to any bird species to test for the effect of a research disturbance or other short and repeated temporal events that may affect reproductive success over one or more breeding seasons.

10.
PLoS One ; 7(8): e43974, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952832

RESUMEN

During the last decade, the role of wildlife in emerging pathogen transmission to domestic animals has often been pointed out. Conversely, far less attention has been paid to pathogen transmission from domestic animals to wildlife. Here, we focus on the case of game restocking, which implies the release of millions of animals worldwide each year. We conducted a 2-year study in the Camargue (Southern France) to investigate the influence of hand-reared Mallard releases on avian influenza virus dynamics in surrounding wildlife. We sampled Mallards (cloacal swabs) from several game duck facilities in 2009 and 2010 before their release. A very high (99%) infection rate caused by an H10N7 strain was detected in the game bird facility we sampled in 2009. We did not detect this strain in shot ducks we sampled, neither during the 2008/2009 nor the 2009/2010 hunting seasons. In 2010 infection rates ranged from 0 to 24% in hand-reared ducks. The 2009 H10N7 strain was fully sequenced. It results from multiple reassortment events between Eurasian low pathogenic strains. Interestingly, H10N7 strains had previously caused human infections in Egypt and Australia. The H10 and N7 segments we sequenced were clearly distinct from the Australian ones but they belonged to the same large cluster as the Egyptian ones. We did not observe any mutation linked to increased virulence, transmission to mammals, or antiviral resistance in the H10N7 strain we identified. Our results indicate that the potential role of hand-reared Mallards in influenza virus epizootics must be taken into account given the likely risk of viral exchange between game bird facilities and wild habitats, owing to duck rearing conditions. Measures implemented to limit transmission from wildlife to domestic animals as well as measures to control transmission from domestic animals to wild ones need to be equally reinforced.


Asunto(s)
Cruzamiento , Patos/virología , Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Recreación , Animales , Patos/genética , Francia , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Filogenia , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA