RESUMEN
A new sensing strategy towards hydrogen peroxide based on metal coordination polyelectrolyte-driven self-assembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complex was demonstrated. The cationic inâ situ-generated Ag(I)-thiocholine coordination polyelectrolytes were shown to induce the supramolecular self-assembly of anionic low-energy red-emissive alkynylplatinum(II) bzimpy complexes via non-covalent Pt(II)â â â Pt(II), electrostatic and π-π stacking interactions. The presence of hydrogen peroxide was shown to inhibit the formation of coordination polyelectrolytes and the coordination polyelectrolyte-induced self-assembly of platinum(II) complexes. The weakening of Pt(II)â â â Pt(II), electrostatic and π-π stacking interactions was supported by UV-vis absorption, emission, and resonance light scattering (RLS) studies. The present assay was also applied to probe glucose indirectly based on the enzymatic reaction of glucose oxidase on the substrate. Operating in a label-free manner, together with the low-energy red emission and large Stokes shift of alkynylplatinum(II) complexes, these features render the proposed design attractive for biological applications.
RESUMEN
A series of pH-responsive alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complexes with charge-reversal properties was synthesized, and the supramolecular assemblies between conjugated polyelectrolyte, PFP-OSO3-, and [Pt{bzimpy(TEG)2}{C≡C-C6H3-(COOH)2-3,5}]Cl (1) have been studied using UV-vis absorption, emission, and resonance light scattering (RLS) spectroscopy. An efficient Förster resonance energy transfer (FRET) from PFP-OSO3- donor to the aggregated 1 as acceptor with the aid of Pt(II)···Pt(II) interactions has been presented, which leads to a growth of triplet metal-metal-to-ligand charge transfer (3MMLCT) emission in the low-energy red region. The two-component PFP-OSO3--1 ensemble was then exploited as a "proof-of-principle" concept strategy for pH sensing by tracking the ratiometric emission changes. With the aid of judicious molecular design on the pH-driven charge-reversal property, the polyelectrolyte-induced self-assembly and the FRET from PFP-OSO3- to the platinum(II) aggregates have been modulated. Together with its excellent reversibility and photostability, the extra stability provided by the Pt(II)···Pt(II) and π-π stacking interactions on top of the electrostatic and hydrophobic interactions existing in polyelectrolye-complex assemblies has led to a selective and sensitive pH sensing assay.
RESUMEN
A label-free detection assay is developed based on the design and synthesis of a new anionic alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine complex with water-soluble pendants. With the aid of electrostatic interaction and noncovalent metal-metal and π-π stacking interactions, protamine is shown to induce supramolecular self-assembly of platinum(II) complexes with drastic UV-vis absorption and red emission changes. On the basis of the strong binding affinity of protamine and heparin, the ensemble has been further employed to probe heparin by monitoring the spectroscopic changes. Other than heparin, this ensemble can also detect the activity of trypsin, which can hydrolyze protamine into fragments, leading to the deaggregation of platinum(II) complexes. By modulation of the self-assembly properties of platinum(II) complexes via real-time UV-vis absorption and emission studies, the reported assay has been demonstrated to be a sensitive and selective detection method for trypsin, as well as trypsin inhibitor screening, which is essential for drug discovery.