Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain ; 135(Pt 9): 2684-98, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22961547

RESUMEN

The most common progressive myoclonus epilepsies are the late infantile and late infantile-variant neuronal ceroid lipofuscinoses (onset before the age of 6 years), Unverricht-Lundborg disease (onset after the age of 6 years) and Lafora disease. Lafora disease is a distinct disorder with uniform course: onset in teenage years, followed by progressively worsening myoclonus, seizures, visual hallucinations and cognitive decline, leading to a vegetative state in status myoclonicus and death within 10 years. Biopsy reveals Lafora bodies, which are pathognomonic and not seen with any other progressive myoclonus epilepsies. Lafora bodies are aggregates of polyglucosans, poorly constructed glycogen molecules with inordinately long strands that render them insoluble. Lafora disease is caused by mutations in the EPM2A or EPM2B genes, encoding the laforin phosphatase and the malin ubiquitin ligase, respectively, two cytoplasmically active enzymes that regulate glycogen construction, ensuring symmetric expansion into a spherical shape, essential to its solubility. In this work, we report a new progressive myoclonus epilepsy associated with Lafora bodies, early-onset Lafora body disease, map its locus to chromosome 4q21.21, identify its gene and mutation and characterize the relationship of its gene product with laforin and malin. Early-onset Lafora body disease presents early, at 5 years, with dysarthria, myoclonus and ataxia. The combination of early-onset and early dysarthria strongly suggests late infantile-variant neuronal ceroid lipofuscinosis, not Lafora disease. Pathology reveals no ceroid lipofuscinosis, but Lafora bodies. The subsequent course is a typical progressive myoclonus epilepsy, though much more protracted than any infantile neuronal ceroid lipofuscinosis, or Lafora disease, patients living into the fourth decade. The mutation, c.781T>C (Phe261Leu), is in a gene of unknown function, PRDM8. We show that the PRDM8 protein interacts with laforin and malin and causes translocation of the two proteins to the nucleus. We find that Phe261Leu-PRDM8 results in excessive sequestration of laforin and malin in the nucleus and that it therefore likely represents a gain-of-function mutation that leads to an effective deficiency of cytoplasmic laforin and malin. We have identified a new progressive myoclonus epilepsy with Lafora bodies, early-onset Lafora body disease, 101 years after Lafora disease was first described. The results to date suggest that PRDM8, the early-onset Lafora body disease protein, regulates the cytoplasmic quantities of the Lafora disease enzymes.


Asunto(s)
Encéfalo/patología , Proteínas Portadoras/genética , Enfermedad de Lafora/genética , Músculo Esquelético/patología , Proteínas Nucleares/genética , Adolescente , Adulto , Edad de Inicio , Atrofia , Niño , Preescolar , Cromosomas Humanos Par 4 , Proteínas de Unión al ADN , Progresión de la Enfermedad , Femenino , Histona Metiltransferasas , Humanos , Enfermedad de Lafora/patología , Escala de Lod , Masculino , Mutación , Piel/patología
2.
Nat Genet ; 35(2): 125-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12958597

RESUMEN

Lafora progressive myoclonus epilepsy is characterized by pathognomonic endoplasmic reticulum (ER)-associated polyglucosan accumulations. We previously discovered that mutations in EPM2A cause Lafora disease. Here, we identify a second gene associated with this disease, NHLRC1 (also called EPM2B), which encodes malin, a putative E3 ubiquitin ligase with a RING finger domain and six NHL motifs. Laforin and malin colocalize to the ER, suggesting they operate in a related pathway protecting against polyglucosan accumulation and epilepsy.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Tirosina Fosfatasas/genética , Secuencia de Bases , Estudios de Cohortes , Femenino , Homocigoto , Humanos , Enfermedad de Lafora/genética , Masculino , Datos de Secuencia Molecular , Epilepsias Mioclónicas Progresivas/enzimología , Linaje , Proteínas Tirosina Fosfatasas no Receptoras , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas
3.
Cloning Stem Cells ; 10(1): 107-18, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18241122

RESUMEN

Human embryonic stem cells (hESCs) can be cultured abundantly and indefinitely, but are subject to accumulations of chromosomal aberrations. To preserve their genetic integrity, hESCs are commonly maintained as cell aggregates or clumps during passaging. However, clump passaging hinders large-scale culture and complicates the isolation of single cell clones. To facilitate the isolation of genetically modified clones of hESCs while preserving their genetic integrity, we employed trypsin single-cell passaging for brief periods before returning to clump passaging for long-term maintenance. We observed that accommodation to trypsin passage as single cells is an adaptive process where over three to four passages considerably increases the plating efficiency. However, trypsin passage was associated with abnormalities of chromosomes 12 and 17. Nevertheless, the high plating efficiency of trypsin passaged hESCs is a reversible phenotype, regardless of chromosomal abnormalities, suggesting that epigenetic events are responsible for the switch in phenotype.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 17 , Células Madre Embrionarias/efectos de los fármacos , Trisomía , Tripsina/farmacología , Adaptación Fisiológica/genética , Algoritmos , Animales , Recuento de Células , Técnicas de Cultivo de Célula , Células Cultivadas , Células Clonales , Eficiencia , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Citometría de Flujo , Humanos , Ratones
4.
Hum Mutat ; 26(4): 397, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16134145

RESUMEN

Progressive Myoclonus Epilepsy (PME) of the Lafora type is an autosomal recessive disease, which presents in teenage years with myoclonia and generalized seizures leading to death within a decade of onset. It is characterized by pathognomonic inclusions, Lafora bodies (LB), in neurons and other cell types. Two genes causing Lafora disease (LD), EPM2A on chromosome 6q24 and NHLRC1 (EPM2B) on chromosome 6p22.3 have been identified, and our recent results indicate there is at least one other gene causing the disease. The EPM2A gene product, laforin, is a protein tyrosine phosphatase (PTP) with a carbohydrate-binding domain (CBD) in the N-terminus. NHLRC1 encodes a protein named malin, containing a zinc finger of the RING type in the N-terminal half and 6 NHL-repeat domains in the C-terminal direction. To date 43 different variations in EPM2A and 23 in NHLRC1 are known, including missense, nonsense, frameshift, and deletions. We have developed a human LD mutation database using a new generic biological database cross-referencing platform. The database, which currently contains 66 entries is accessible on the World Wide Web (http://projects.tcag.ca/lafora). Entries can be submitted via the curator of the database or via a web-based form.


Asunto(s)
Proteínas Portadoras/genética , Bases de Datos Genéticas , Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Tirosina Fosfatasas/genética , Adolescente , Humanos , Proteínas Tirosina Fosfatasas no Receptoras , Programas Informáticos , Ubiquitina-Proteína Ligasas
5.
Hum Mutat ; 23(2): 170-176, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14722920

RESUMEN

Lafora disease is the most severe teenage-onset progressive epilepsy, a unique form of glycogenosis with perikaryal accumulation of an abnormal form of glycogen, and a neurodegenerative disorder exhibiting an unusual generalized organellar disintegration. The disease is caused by mutations of the EPM2A gene, which encodes two isoforms of the laforin protein tyrosine phosphatase, having alternate carboxyl termini, one localized in the cytoplasm (endoplasmic reticulum) and the other in the nucleus. To date, all documented disease mutations, including the knockout mouse model deletion, have been in the segment of the protein common to both isoforms. It is therefore not known whether dysfunction of the cytoplasmic, nuclear, or both isoforms leads to the disease. In the present work, we identify six novel mutations, one of which, c.950insT (Q319fs), is the first mutation specific to the cytoplasmic laforin isoform, implicating this isoform in disease pathogenesis. To confirm this mutation's deleterious effect on laforin, we studied the resultant protein's subcellular localization and function and show a drastic reduction in its phosphatase activity, despite maintenance of its location at the endoplasmic reticulum.


Asunto(s)
Citoplasma/química , Enfermedad de Lafora/genética , Proteínas Tirosina Fosfatasas/deficiencia , Proteínas Tirosina Fosfatasas/genética , Adulto , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Células COS , Línea Celular , Chlorocebus aethiops , Citoplasma/genética , Fosfatasas de Especificidad Dual , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación/genética , Mutación Missense/genética , Linaje , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras
8.
Nat Biotechnol ; 27(11): 1033-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19826408

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by enforced expression of transcription factors. Using serial live imaging of human fibroblasts undergoing reprogramming, we identified distinct colony types that morphologically resemble embryonic stem (ES) cells yet differ in molecular phenotype and differentiation potential. By analyzing expression of pluripotency markers, methylation at the OCT4 and NANOG promoters and differentiation into teratomas, we determined that only one colony type represents true iPS cells, whereas the others represent reprogramming intermediates. Proviral silencing and expression of TRA-1-60, DNMT3B and REX1 can be used to distinguish the fully reprogrammed state, whereas alkaline phosphatase, SSEA-4, GDF3, hTERT and NANOG are insufficient as markers. We also show that reprogramming using chemically defined medium favors formation of fully reprogrammed over partially reprogrammed colonies. Our data define molecular markers of the fully reprogrammed state and highlight the need for rigorous characterization and standardization of putative iPS cells.


Asunto(s)
Reprogramación Celular/genética , Imagenología Tridimensional/métodos , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Línea Celular , Forma de la Célula , Supervivencia Celular , Ensayo de Unidades Formadoras de Colonias , Células Madre Embrionarias/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Teratoma/patología , Factores de Tiempo
9.
Hum Mol Genet ; 14(18): 2727-36, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16115820

RESUMEN

Lafora progressive myoclonus epilepsy, caused by defective laforin or malin, insidiously present in normal teenagers with cognitive decline, followed by rapidly intractable epilepsy, dementia and death. Pathology reveals neurodegeneration with neurofibrillary tangle formation and Lafora bodies (LBs). LBs are deposits of starch-like polyglucosans, insufficiently branched and hence insoluble glycogen molecules resulting from glycogen synthase (GS) overactivity relative to glycogen branching enzyme activity. We previously made the unexpected observation that laforin, in the absence of which polyglucosans accumulate, specifically binds polyglucosans. This suggested that laforin's role is to detect polyglucosan appearances during glycogen synthesis and to initiate mechanisms to downregulate GS. Glycogen synthase kinase 3 (GSK3) is the principal inhibitor of GS. Dephosphorylation of GSK3 at Ser 9 activates GSK3 to inhibit GS through phosphorylation at multiple sites. Glucose-6-phosphate is a potent allosteric activator of GS. Glucose-6-phosphate levels are high when the amount of glucose increases and its activation of GS overrides any phospho-inhibition. Here, we show that laforin is a GSK3 Ser 9 phosphatase, and therefore capable of inactivating GS through GSK3. We also show that laforin interacts with malin and that malin is an E3 ubiquitin ligase that binds GS. We propose that laforin, in response to appearance of polyglucosans, directs two negative feedback pathways: polyglucosan-laforin-GSK3-GS to inhibit GS activity and polyglucosan-laforin-malin-GS to remove GS through proteasomal degradation.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedad de Lafora/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina/metabolismo , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Microscopía Electrónica , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Proteínas Tirosina Fosfatasas no Receptoras , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas
10.
Science ; 307(5706): 81, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15637270

RESUMEN

Epilepsy afflicts 1% of humans and 5% of dogs. We report a canine epilepsy mutation and evidence for the existence of repeat-expansion disease outside humans. A canid-specific unstable dodecamer repeat in the Epm2b (Nhlrc1) gene recurrently expands, causing a fatal epilepsy and contributing to the high incidence of canine epilepsy. Tracing the repeat origins revealed two successive events, starting 50 million years ago, unique to canid evolution. A genetic test, presented here, will allow carrier and presymptomatic diagnosis and disease eradication. Clinicopathologic characterization establishes affected animals as a model for Lafora disease, the most severe teenage-onset human epilepsy.


Asunto(s)
Expansión de las Repeticiones de ADN , Enfermedades de los Perros/genética , Perros/genética , Enfermedad de Lafora/veterinaria , Alelos , Animales , Mapeo Cromosómico , Clonación Molecular , Femenino , Enfermedad de Lafora/genética , Masculino , Músculo Esquelético/metabolismo , Linaje , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
11.
Hum Mol Genet ; 12(16): 2031-40, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12913074

RESUMEN

Sequences in exons can play an important role in constitutive and regulated pre-mRNA splicing. Since exonic splicing regulatory sequences are generally poorly conserved and their mechanism of action is not well understood, the consequence of exonic mutations on splicing can only be determined empirically. In this study, we have investigated the consequence of two cystic fibrosis (CF) disease-causing mutations, E656X and 2108delA, on the function of a putative exonic splicing enhancer (ESE) in exon 13 of the CFTR gene. We have also determined whether five other CF mutations D648V, D651N, G654S, E664X and T665S located near this putative ESE could lead to aberrant splicing of exon 13. Using minigene constructs, we have demonstrated that the E656X and 2108delA mutations could indeed cause aberrant splicing in a predicted manner, supporting a role for the putative ESE sequence in pre-mRNA splicing. In addition, we have shown that D648V, E664X and T665S mutations could cause aberrant splicing of exon 13 by improving the polypyrimidine tracts of two cryptic 3' splice sites. We also provide evidence that the relative levels of two splicing factors, hTra2alpha and SF2/ASF, could alter the effect on splicing of some of the exon 13 disease mutations. Taken together, our results suggest that the severity of CF disease could be modulated by changes in the fidelity of CFTR pre-mRNA splicing.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Elementos de Facilitación Genéticos/fisiología , Exones , Mutación , Sitios de Empalme de ARN/genética , Empalme del ARN , Animales , Secuencia de Bases , Células COS , Fibrosis Quística/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plásmidos , Precursores del ARN/genética , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Empalme Serina-Arginina , Transactivadores/genética , Transactivadores/metabolismo , Transfección
12.
Hum Mol Genet ; 13(11): 1117-29, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15102711

RESUMEN

Lafora disease (LD) is a fatal and the most common form of adolescent-onset progressive epilepsy. Fulminant endoplasmic reticulum (ER)-associated depositions of starch-like long-stranded, poorly branched glycogen molecules [known as polyglucosans, which accumulate to form Lafora bodies (LBs)] are seen in neuronal perikarya and dendrites, liver, skeletal muscle and heart. The disease is caused by loss of function of the laforin dual-specificity phosphatase or the malin E3 ubiquitin ligase. Towards understanding the pathogenesis of polyglucosans in LD, we generated a transgenic mouse overexpressing inactivated laforin to trap normal laforin's unknown substrate. The trap was successful and LBs formed in liver, muscle, neuronal perikarya and dendrites. Using immunogold electron microscopy, we show that laforin is found in close proximity to the ER surrounding the polyglucosan accumulations. In neurons, it compartmentalizes to perikaryon and dendrites and not to axons. Importantly, it binds polyglucosans, establishing for the first time a direct association between the disease-defining storage product and disease protein. It preferentially binds polyglucosans over glycogen in vivo and starch over glycogen in vitro, suggesting that laforin's role begins after the appearance of polyglucosans and that the laforin pathway is involved in monitoring for and then preventing the formation of polyglucosans. In addition, we show that the laforin interacting protein, EPM2AIP1, also localizes on the polyglucosan masses, and we confirm laforin's intense binding to LBs in human LD biopsy material.


Asunto(s)
Glucanos/metabolismo , Enfermedad de Lafora/patología , Proteínas Tirosina Fosfatasas/metabolismo , Actinas/genética , Animales , Encéfalo/patología , Fosfatasas de Especificidad Dual , Retículo Endoplásmico/ultraestructura , Técnicas de Transferencia de Gen , Glucógeno/metabolismo , Humanos , Inmunoquímica , Cuerpos de Inclusión/ultraestructura , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Hígado/patología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Almidón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA