Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci Res ; 93(1): 140-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25082329

RESUMEN

Postconditioning mitigates ischemia-induced cellular damage via a modified reperfusion procedure. Mitochondrial permeability transition (MPT) is an important pathophysiological change in reperfusion injury. This study explores the role of MPT modulation underlying hypoxic postconditioning (HPoC) in PC12 cells and studies the neuroprotective effects of ischemic postconditioning (IPoC) on rats. Oxygen-glucose deprivation (OGD) was performed for 10 hr on PC12 cells. HPoC was induced by three cycles of 10-min reoxygenation/10-min rehypoxia after OGD. The MPT inhibitor N-methyl-4-isoleucine cyclosporine (NIM811) and the MPT inducer carboxyatractyloside (CATR) were administered to selective groups before OGD. Cellular death was evaluated by flow cytometry and Western blot analysis. JC-1 fluorescence signal was used to estimate the mitochondrial membrane potential (△Ψm ). Transient global cerebral ischemia (tGCI) was induced via the two-vessel occlusion and hypotension method in male Sprague Dawley rats. IPoC was induced by three cycles of 10-sec reperfusion/10-sec reocclusion after index ischemia. HPoC and NIM811 administration attenuated cell death, cytochrome c release, and caspase-3 activity and maintained △Ψm of PC12 cells after OGD. The addition of CATR negated the protection conferred by HPoC. IPoC reduced neuronal degeneration and cytochrome c release and cleaved caspase-9 expression of hippocampal CA1 neurons in rats after tGCI. HPoC protected PC12 cells against OGD by modulating the MPT. IPoC attenuated degeneration of hippocampal neurons after cerebral ischemia.


Asunto(s)
Glucosa/metabolismo , Poscondicionamiento Isquémico , Oxígeno/metabolismo , Daño por Reperfusión/patología , Animales , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Fluoresceínas , Formazáns , Hipocampo/patología , Masculino , Potencial de la Membrana Mitocondrial , Células PC12 , Ratas , Sales de Tetrazolio
2.
J Neurosci ; 32(10): 3462-73, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22399769

RESUMEN

Transplantation of neural stem cells (NSCs) offers a novel therapeutic strategy for stroke; however, massive grafted cell death following transplantation, possibly due to a hostile host brain environment, lessens the effectiveness of this approach. Here, we have investigated whether reprogramming NSCs with minocycline, a broadly used antibiotic also known to possess cytoprotective properties, enhances survival of grafted cells and promotes neuroprotection in ischemic stroke. NSCs harvested from the subventricular zone of fetal rats were preconditioned with minocycline in vitro and transplanted into rat brains 6 h after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from days 0-28 after stroke. For in vitro experiments, NSCs were subjected to oxygen-glucose deprivation and reoxygenation. Cell viability and antioxidant gene expression were analyzed. Minocycline preconditioning protected the grafted NSCs from ischemic reperfusion injury via upregulation of Nrf2 and Nrf2-regulated antioxidant genes. Additionally, preconditioning with minocycline induced the NSCs to release paracrine factors, including brain-derived neurotrophic factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor. Moreover, transplantation of the minocycline-preconditioned NSCs significantly attenuated infarct size and improved neurological performance, compared with non-preconditioned NSCs. Minocycline-induced neuroprotection was abolished by transfecting the NSCs with Nrf2-small interfering RNA before transplantation. Thus, preconditioning with minocycline, which reprograms NSCs to tolerate oxidative stress after ischemic reperfusion injury and express higher levels of paracrine factors through Nrf2 up-regulation, is a simple and safe approach to enhance the effectiveness of transplantation therapy in ischemic stroke.


Asunto(s)
Isquemia Encefálica/prevención & control , Precondicionamiento Isquémico/métodos , Minociclina/farmacología , Células-Madre Neurales/trasplante , Fármacos Neuroprotectores/farmacología , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/cirugía , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Masculino , Minociclina/uso terapéutico , Células-Madre Neurales/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/cirugía
3.
J Neurochem ; 124(4): 523-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23199288

RESUMEN

Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro-inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up-regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen-glucose deprivation in brain cells. Persistent up-regulation of complement component 3 expression was reduced in copper/zinc-superoxide dismutase transgenic mice, and manganese-superoxide dismutase knock-out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N-tert-butyl-α-phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N-tert-butyl-α-phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen-glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Complemento C3/metabolismo , Óxidos N-Cíclicos/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/prevención & control , Regulación hacia Arriba/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/sangre , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Complemento C3/genética , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ensayo de Inmunoadsorción Enzimática , Glucosa/deficiencia , Hipoxia , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
4.
Circ J ; 77(1): 73-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23006784

RESUMEN

BACKGROUND: Percutaneous coronary intervention of complex true bifurcation lesions often fails to ensure continuous stent coverage and strut apposition in both the side branch and main vessel. Struts left unopposed floating in the lumen disturb blood flow and are increasingly recognized as increasing the risk of stent thrombosis. METHODS AND RESULTS: In this study, we compared the results of different bifurcation treatment strategies: Crush (n=5); Culotte (n=3); T-/T with Protrusion (TAP) (n=4) using drug-eluting stents deployed in-vitro in representative coronary bifurcation models. After final kissing balloon post-dilatation, the rate of malapposition within the bifurcation quantified from micro-computed tomography scanning was on average 41.5 ± 8.2% with the Crush technique, reduced to respectively 31.4 ± 5.2% with Culotte and 36.7 ± 8.0% with T-/TAP approach. Overlaying layers of struts in the Crush and Culotte techniques lead to a significantly higher rate of strut malapposition in the proximal vessel than with the T-/TAP technique (Crush: 39.1 ± 10.7%, Culotte: 26.1 ± 7.7%, TAP: 4.2 ± 7.2%, P<0.01). Maximal wall-malapposed strut distance was also found on average to be higher with the Crush (1.36 ± 0.4mm) and Culotte techniques (1.32 ± 0.1mm) than with T-/TAP (1.08 ± 0.1mm, P=0.04). CONCLUSIONS: In this model, the Crush technique resulted in a higher risk of malapposition than either the Culotte or T-/TAP technique.


Asunto(s)
Stents Liberadores de Fármacos , Modelos Cardiovasculares , Intervención Coronaria Percutánea/métodos , Microtomografía por Rayos X , Humanos , Intervención Coronaria Percutánea/efectos adversos
5.
Brain ; 135(Pt 11): 3298-310, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23169920

RESUMEN

Transplantation of neural stem cells provides a promising therapy for stroke. Its efficacy, however, might be limited because of massive grafted-cell death after transplantation, and its insufficient capability for tissue repair. Interleukin 6 is a pro-inflammatory cytokine involved in the pathogenesis of various neurological disorders. Paradoxically, interleukin 6 promotes a pro-survival signalling pathway through activation of signal transducer and activator of transcription 3. In this study, we investigated whether cellular reprogramming of neural stem cells with interleukin 6 facilitates the effectiveness of cell transplantation therapy in ischaemic stroke. Neural stem cells harvested from the subventricular zone of foetal mice were preconditioned with interleukin 6 in vitro and transplanted into mouse brains 6 h or 7 days after transient middle cerebral artery occlusion. Interleukin 6 preconditioning protected the grafted neural stem cells from ischaemic reperfusion injury through signal transducer and activator of transcription 3-mediated upregulation of manganese superoxide dismutase, a primary mitochondrial antioxidant enzyme. In addition, interleukin 6 preconditioning induced secretion of vascular endothelial growth factor from the neural stem cells through activation of signal transducer and activator of transcription 3, resulting in promotion of angiogenesis in the ischaemic brain. Furthermore, transplantation of interleukin 6-preconditioned neural stem cells significantly attenuated infarct size and improved neurological performance compared with non-preconditioned neural stem cells. This interleukin 6-induced amelioration of ischaemic insults was abolished by transfecting the neural stem cells with signal transducer and activator of transcription 3 small interfering RNA before transplantation. These results indicate that preconditioning with interleukin 6, which reprograms neural stem cells to tolerate oxidative stress after ischaemic reperfusion injury and to induce angiogenesis through activation of signal transducer and activator of transcription 3, is a simple and beneficial approach for enhancing the effectiveness of cell transplantation therapy in ischaemic stroke.


Asunto(s)
Interleucina-6/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/trasplante , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/terapia , Inductores de la Angiogénesis/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/cirugía , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Interleucina-6/antagonistas & inhibidores , Interleucina-6/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Examen Neurológico/métodos , Examen Neurológico/estadística & datos numéricos , ARN Interferente Pequeño/farmacología , Daño por Reperfusión/tratamiento farmacológico , Factor de Transcripción STAT3/fisiología , Accidente Cerebrovascular/fisiopatología , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Stroke ; 43(9): 2423-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22713489

RESUMEN

BACKGROUND AND PURPOSE: The harsh host brain microenvironment caused by production of reactive oxygen species after ischemic reperfusion injury offers a significant challenge to survival of transplanted neural stem cells (NSCs) after ischemic stroke. Copper/zinc-superoxide dismutase (SOD1) is a specific antioxidant enzyme that counteracts superoxide anions. We have investigated whether genetic manipulation to overexpress SOD1 enhances survival of grafted stem cells and accelerates amelioration of ischemic stroke. METHODS: NSCs genetically modified to overexpress or downexpress SOD1 were administered intracerebrally 2 days after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from Days 0 to 28 after stroke. RESULTS: Overexpression of SOD1 suppressed production of superoxide anions after ischemic reperfusion injury and reduced NSC death after transplantation. In contrast, downexpression of SOD1 promoted superoxide generation and increased oxidative stress-mediated NSC death. Transplantation of SOD1-overexpressing NSCs enhanced angiogenesis in the ischemic border zone through upregulation of vascular endothelial growth factor. Moreover, grafted SOD1-overexpressing NSCs reduced infarct size and improved behavioral performance compared with NSCs that were not genetically modified. CONCLUSIONS: Our findings reveal a strong involvement of SOD1 expression in NSC survival after ischemic reperfusion injury. We propose that conferring antioxidant properties on NSCs by genetic manipulation of SOD1 is a potential approach for enhancing the effectiveness of cell transplantation therapy in ischemic stroke.


Asunto(s)
Isquemia Encefálica/terapia , Células-Madre Neurales/fisiología , Trasplante de Células Madre , Accidente Cerebrovascular/terapia , Superóxido Dismutasa/genética , Animales , Isquemia Encefálica/patología , Separación Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glucosa/deficiencia , Hipoxia Encefálica/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Accidente Cerebrovascular/patología , Superóxido Dismutasa/biosíntesis , Superóxidos/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis
7.
Neurobiol Dis ; 46(2): 440-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22366181

RESUMEN

Oxidative stress and glucose affect the expression of various genes that contribute to both reactive oxygen species generation and antioxidant systems. However, systemic alteration of oxidative stress-related gene expression in normal brains and in brains with a high-glucose status after ischemic-reperfusion has not been explored. Using a polymerase chain reaction array system, we demonstrate that thioredoxin-interacting protein (Txnip) is induced by both oxidative stress and glucose. We found that Txnip mRNA is induced by ischemic-reperfusion injury and that Txnip is located in the cytoplasm of neurons. Moreover, in vitro oxygen-glucose deprivation (OGD) and subsequent reoxygenation without glucose and in vivo administration of 3-nitropropionic acid also promoted an increase in Txnip in a time-dependent manner, indicating that oxidative stress without glucose can induce Txnip expression in the brain. However, calcium channel blockers inhibit induction of Txnip after OGD and reoxygenation. Using the polymerase chain reaction array with ischemic and hyperglycemic-ischemic samples, we confirmed that enhanced expression of Txnip was observed in hyperglycemic-ischemic brains after middle cerebral artery occlusion. Finally, transfection of Txnip small interfering RNA into primary neurons reduced lactate dehydrogenase release after OGD and reoxygenation. This is the first report showing that Txnip expression is induced in neurons after oxidative or glucose stress under either ischemic or hyperglycemic-ischemic conditions, and that Txnip is proapoptotic under these conditions.


Asunto(s)
Lesiones Encefálicas/metabolismo , Señalización del Calcio/fisiología , Proteínas Portadoras/biosíntesis , Glucosa/fisiología , Estrés Oxidativo/fisiología , Tiorredoxinas/biosíntesis , Animales , Proteínas Reguladoras de la Apoptosis/biosíntesis , Isquemia Encefálica/metabolismo , Células Cultivadas , Femenino , Hiperglucemia/metabolismo , Masculino , Ratones , Embarazo
8.
Biochim Biophys Acta ; 1802(1): 92-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19751828

RESUMEN

Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways.


Asunto(s)
Apoptosis , Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Apoptosis/fisiología , Muerte Celular , Humanos , Ratones , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
9.
Stroke ; 42(12): 3574-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940958

RESUMEN

BACKGROUND AND PURPOSE: Interleukin-6 (IL-6) has been shown to have a neuroprotective effect in brain ischemic injury. However, its molecular mechanisms are still poorly understood. In this study, we investigated the neuroprotective role of the IL-6 receptor (IL-6R) by IL-6 in the reactive oxygen species defense system after transient focal cerebral ischemia (tFCI). METHODS: IL-6 was injected in mice before and after middle cerebral artery occlusion. Coimmunoprecipitation assays were performed for analysis of an IL-6R association after tFCI. Primary mouse cerebral cortical neurons were transfected with small interfering RNA probes targeted to IL-6Rα or gp130 and were used for chromatin-immunoprecipitation assay, luciferase promoter assay, and cell viability assay. Reduction in infarct volumes by IL-6 was measured after tFCI. RESULTS: IL-6R was disrupted through a disassembly between IL-6Rα and gp130 associated by protein oxidation after reperfusion after tFCI. This suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and finally induced neuronal cell death through a decrease in manganese-superoxide dismutase. However, IL-6 injections prevented disruption of IL-6R against reperfusion after tFCI, consequently restoring activity of STAT3 through recovery of the binding of STAT3 to gp130. Moreover, IL-6 injections restored the transcriptional activity of the manganese-superoxide dismutase promoter through recovery of the recruitment of STAT3 to the manganese-superoxide dismutase promoter and reduced infarct volume after tFCI. CONCLUSIONS: This study demonstrates that IL-6 has a neuroprotective effect against cerebral ischemic injury through IL-6R-mediated STAT3 activation and manganese-superoxide dismutase expression.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Interleucina-6/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/metabolismo , Muerte Celular/efectos de los fármacos , Receptor gp130 de Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Superóxido Dismutasa/metabolismo
10.
Neurobiol Dis ; 42(3): 341-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21303700

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is widely expressed in brain tissue including neurons, glia, and endothelia in neurovascular units. It is a major source of oxidants in the post-ischemic brain and significantly contributes to ischemic brain damage. Inflammation occurs after brain ischemia and is known to be associated with post-ischemic oxidative stress. Post-ischemic inflammation also causes progressive brain injury. In this study we investigated the role of NOX2 in post-ischemic cerebral inflammation using a transient middle cerebral artery occlusion model in mice. We demonstrate that mice with NOX2 subunit gp91(phox) knockout (gp91 KO) showed 35-44% less brain infarction at 1 and 3 days of reperfusion compared with wild-type (WT) mice. Minocycline further reduced brain damage in the gp91 KO mice at 3 days of reperfusion. The gp91 KO mice exhibited less severe post-ischemic inflammation in the brain, as evidenced by reduced microglial activation and decreased upregulation of inflammation mediators, including interleukin-1ß (IL-1ß), tumor necrosis factor-α, inducible nitric oxide synthases, CC-chemokine ligand 2, and CC-chemokine ligand 3. Finally, we demonstrated that an intraventricular injection of IL-1ß enhanced ischemia- and reperfusion-mediated brain damage in the WT mice (double the infarction volume), whereas, it failed to aggravate brain infarction in the gp91 KO mice. Taken together, these results demonstrate the involvement of NOX2 in post-ischemic neuroinflammation and that NOX2 inhibition provides neuroprotection against inflammatory cytokine-mediated brain damage.


Asunto(s)
Isquemia Encefálica/enzimología , Encéfalo/enzimología , Encefalitis/enzimología , NADPH Oxidasas/metabolismo , Análisis de Varianza , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Citocinas/metabolismo , Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Inmunohistoquímica , Ratones , Ratones Noqueados , Minociclina/farmacología , Minociclina/uso terapéutico , Estrés Oxidativo/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Proc Natl Acad Sci U S A ; 105(42): 16368-73, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18845684

RESUMEN

A brief period of global brain ischemia, such as that induced by cardiac arrest or cardiopulmonary bypass surgery, causes cell death in vulnerable hippocampal CA1 pyramidal neurons days after reperfusion. Although numerous factors have been suggested to account for this phenomenon, the mechanisms underlying it are poorly understood. We describe a cell death signal called the PIDDosome, a protein complex of p53-induced protein with a death domain (PIDD), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and procaspase-2. We induced 5 min of transient global cerebral ischemia (tGCI) using bilateral common carotid artery occlusion with hypotension. Western blot analysis showed that expression of twice-cleaved fragment of PIDD (PIDD-CC) increased in the cytosolic fraction of the hippocampal CA1 subregion and preceded procaspase-2 activation after tGCI. Caspase-2 cleaved Bid in brain homogenates. Co-immunoprecipitation and immunofluorescent studies demonstrated that PIDD-CC, RAIDD, and procaspase-2 were co-localized and bound directly, which indicates the formation of the PIDD death domain complex. Furthermore, we tested inhibition of PIDD expression by using small interfering RNA (siRNA) treatment that was initiated 48 h before tGCI. Administration of siRNA against PIDD decreased not only expression of PIDD-CC, but also activation of procaspase-2 and Bid, resulting in a decrease in histological neuronal damage and DNA fragmentation in the hippocampal CA1 subregion after tGCI. These results imply that PIDD plays an important role in procaspase-2 activation and delayed CA1 neuronal death after tGCI. We propose that PIDD is a hypothetical molecular target for therapy against neuronal death after tGCI.


Asunto(s)
Hipocampo/metabolismo , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Neuronas/metabolismo , Animales , Caspasa 2/metabolismo , Citosol/metabolismo , Activación Enzimática , ARN Interferente Pequeño/genética , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
12.
J Neurosci ; 29(47): 14779-89, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19940173

RESUMEN

NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. In this study, we identified casein kinase 2 (CK2) as a critical modulator of NADPH oxidase and elucidated the role of CK2 as a neuroprotectant after oxidative insults to the brain. We found that the protein levels of the catalytic subunits CK2alpha and CK2alpha', as well as the total activity of CK2, are significantly reduced after transient focal cerebral ischemia (tFCI). We also found this deactivation of CK2 caused by ischemia/reperfusion increases expression of Nox2 and translocation of p67(phox) and Rac1 to the membrane after tFCI. Interestingly, we found that the inactive status of Rac1 was captured by the catalytic subunit CK2alpha under normal conditions. However, binding between CK2alpha and Rac1 was immediately diminished after tFCI, and Rac1 activity was markedly increased after CK2 inhibition. Moreover, we found that deactivation of CK2 in the mouse brain enhances production of ROSs and neuronal cell death via increased NADPH oxidase activity. The increased brain infarct volume caused by CK2 inhibition was restored by apocynin, a NADPH oxidase inhibitor. This study suggests that CK2 can be a direct molecular target for modulation of NADPH oxidase activity after ischemic brain injury.


Asunto(s)
Isquemia Encefálica/enzimología , Encéfalo/enzimología , Quinasa de la Caseína II/metabolismo , Citoprotección/fisiología , NADPH Oxidasas/metabolismo , Acetofenonas/farmacología , Animales , Encéfalo/fisiopatología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/fisiopatología , Quinasa de la Caseína II/antagonistas & inhibidores , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Activación Enzimática/fisiología , Inhibidores Enzimáticos/efectos adversos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfoproteínas/metabolismo , Unión Proteica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Proteína de Unión al GTP rac1/metabolismo
13.
J Neurosci ; 29(21): 7003-14, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19474327

RESUMEN

Cerebral ischemia and reperfusion increase superoxide anions (O(2)(*-)) in brain mitochondria. Manganese superoxide dismutase (Mn-SOD; SOD2), a primary mitochondrial antioxidant enzyme, scavenges superoxide radicals and its overexpression provides neuroprotection. However, the regulatory mechanism of Mn-SOD expression during cerebral ischemia and reperfusion is still unclear. In this study, we identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse Mn-SOD gene, and elucidated the mechanism of O(2)(*-) overproduction after transient focal cerebral ischemia (tFCI). We found that Mn-SOD expression is significantly reduced by reperfusion in the cerebral ischemic brain. We also found that activated STAT3 is usually recruited into the mouse Mn-SOD promoter and upregulates transcription of the mouse Mn-SOD gene in the normal brain. However, at early postreperfusion periods after tFCI, STAT3 was rapidly downregulated, and its recruitment into the Mn-SOD promoter was completely blocked. In addition, transcriptional activity of the mouse Mn-SOD gene was significantly reduced by STAT3 inhibition in primary cortical neurons. Moreover, we found that STAT3 deactivated by reperfusion induces accumulation of O(2)(*-) in mitochondria. The loss of STAT3 activity induced neuronal cell death by reducing Mn-SOD expression. Using SOD2-/+ heterozygous knock-out mice, we found that Mn-SOD is a direct target of STAT3 in reperfusion-induced neuronal cell death. Our study demonstrates that STAT3 is a novel transcription factor of the mouse Mn-SOD gene and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the mouse brain.


Asunto(s)
Isquemia Encefálica/prevención & control , Factor de Transcripción STAT3/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Encéfalo/citología , Infarto Encefálico/etiología , Infarto Encefálico/prevención & control , Isquemia Encefálica/complicaciones , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética/métodos , Embrión de Mamíferos , Glucosa/deficiencia , Humanos , Hipoxia , Interleucina-6/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , ARN Interferente Pequeño/farmacología , Reperfusión , Factor de Transcripción STAT3/antagonistas & inhibidores , Superóxido Dismutasa/deficiencia , Factores de Tiempo , Transfección/métodos , Tirfostinos/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos
14.
J Clin Invest ; 117(4): 910-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404617

RESUMEN

Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47(phox) subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase.


Asunto(s)
Hipoglucemia/patología , Hipoglucemia/fisiopatología , NADPH Oxidasas/metabolismo , Neuronas/fisiología , Muerte Celular , Activación Enzimática , Glucosa/farmacología , Humanos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Reperfusión , Superóxidos/metabolismo
15.
Stroke ; 40(7): 2512-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19461023

RESUMEN

BACKGROUND AND PURPOSE: Protracted hypoperfusion is one of the hallmarks of secondary cerebral derangement after cardiac arrest and resuscitation (CAR), and reactive oxygen species have been implicated in reperfusion abnormalities. METHODS: Using transgenic (Tg) rats overexpressing copper zinc superoxide dismutase (SOD1), we investigated the role of this intrinsic antioxidant in the restoration of cerebral blood flow (CBF) after CAR. Nine Tg and 11 wild-type (WT) rats were subjected to a nominal 15-minute cardiac arrest, and CBF was measured using the noninvasive arterial spin labeling MRI method before and during cardiac arrest, and 0 to 2 hours and 1 to 5 days after resuscitation. RESULTS: The SOD1-Tg rats showed rapid normalization of CBF 1 day after the insult, whereas CBF in WT animals remained abnormal for at least 5 days, showing a progressive increase in CBF from hypo- to hyperperfusion on postresuscitation days 1 to 5. The long-term outcome, as measured by survival time, change in body weight, and mapping of apparent diffusion coefficient (ADC) for ion/water homeostasis, was significantly better in the SOD1-Tg rats. CONCLUSIONS: Our results support the notion that reactive oxygen species are at least partially responsible for microvascular reperfusion disorders.


Asunto(s)
Lesiones Encefálicas/metabolismo , Paro Cardíaco/metabolismo , Recuperación de la Función/fisiología , Daño por Reperfusión/metabolismo , Resucitación , Superóxido Dismutasa/metabolismo , Animales , Antioxidantes/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/patología , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Homeostasis/fisiología , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Especies Reactivas de Oxígeno/metabolismo , Flujo Sanguíneo Regional/fisiología , Daño por Reperfusión/etiología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
16.
Stroke ; 40(2): 618-25, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19095966

RESUMEN

BACKGROUND AND PURPOSE: p53-upregulated modulator of apoptosis (PUMA), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and -independent forms of apoptosis. PUMA localizes to mitochondria and interacts with antiapoptotic Bcl-2 and Bcl-X(L) or proapoptotic Bax in response to death stimuli. Although studies have shown that PUMA is associated with pathomechanisms of cerebral ischemia, clearly defined roles for PUMA in ischemic neuronal death remain unclear. The purpose of this study was to determine potential roles for PUMA in cerebral ischemia. METHODS: Five minutes of transient global cerebral ischemia (tGCI) were induced by bilateral common carotid artery occlusion combined with hypotension. RESULTS: PUMA was upregulated in vulnerable hippocampal CA1 neurons after tGCI as shown by immunohistochemistry. In Western blot and coimmunoprecipitation analyses, PUMA localized to mitochondria and was bound to Bcl-X(L) and Bax in the hippocampal CA1 subregion after tGCI. PUMA upregulation was inhibited by pifithrin-alpha, a specific inhibitor of p53, suggesting that PUMA is partly controlled by the p53 transcriptional pathway after tGCI. Furthermore, reduction in oxidative stress by overexpression of copper/zinc superoxide dismutase, which is known to be protective of vulnerable ischemic hippocampal neurons, inhibited PUMA upregulation and subsequent hippocampal CA1 neuronal death after tGCI. CONCLUSIONS: These results imply a potential role for PUMA in delayed CA1 neuronal death after tGCI and that it could be a molecular target for therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Hipocampo/patología , Ataque Isquémico Transitorio/patología , Neuronas/patología , Animales , Benzotiazoles/farmacología , Benzoxazinas , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Citosol/fisiología , Inmunohistoquímica , Inmunoprecipitación , Mitocondrias/metabolismo , Oxazinas , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Ratas , Ratas Transgénicas , Superóxido Dismutasa/genética , Tolueno/análogos & derivados , Tolueno/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genética , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
17.
Stroke ; 40(4): 1467-73, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19228841

RESUMEN

BACKGROUND AND PURPOSE: Cerebral endothelial cells that line microvessels play an important role in maintaining blood flow homeostasis within the brain-forming part of the blood-brain barrier. These cells are injured by hypoxia-induced reperfusion, leading to blood-brain barrier breakdown and exacerbation of ischemic injury. We investigated the roles of vascular endothelial growth factor (VEGF) and the downstream extracellular signal-regulated kinase (ERK) protein after oxygen-glucose deprivation (OGD) in primary endothelial cells. METHODS: Primary mouse endothelial cells were isolated and subjected to OGD. Western analysis of VEGF and ERK 1/2 protein levels was performed. Cells were transfected with VEGF small interference RNA. A terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay and DNA fragmentation assay were used on mouse endothelial cells that overexpress copper/zinc-superoxide dismutase (SOD1). RESULTS: VEGF protein expression was induced and its receptor, Flk-1, was stimulated by OGD. Phosphorylation of ERK 1/2 protein levels was upregulated. Inhibition of phosphorylated ERK (pERK) expression by U0126 reduced endothelial cell death by OGD. Transfection of small interfering RNA for VEGF also inhibited an increase in pERK, suggesting that VEGF acts via ERK. The TUNEL and DNA fragmentation assays showed a significant decrease in TUNEL-positivity in the SOD1-overexpressing endothelial cells compared with wild-type cells after OGD. CONCLUSIONS: Our data suggest that OGD induces VEGF signaling via its receptor, Flk-1, and activates ERK via oxidative-stress-dependent mechanisms. Our study shows that in cerebral endothelial cells the ERK 1/2 signaling pathway plays a significant role in cell injury after OGD.


Asunto(s)
Células Endoteliales/metabolismo , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/fisiología , Barrera Hematoencefálica/fisiología , Hipoxia de la Célula/fisiología , Células Endoteliales/citología , Glucosa/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Oxígeno/farmacología , ARN Interferente Pequeño , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
J Neurochem ; 109 Suppl 1: 133-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19393019

RESUMEN

Mitochondria are the powerhouse of the cell. Their primary physiological function is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Reactive oxygen species generated from mitochondria have been implicated in acute brain injuries such as stroke and neurodegeneration. Recent studies have shown that mitochondrially-formed oxidants are mediators of molecular signaling, which is implicated in the mitochondria-dependent apoptotic pathway that involves pro- and antiapoptotic protein binding, the release of cytochrome c, and transcription-independent p53 signaling, leading to neuronal death. Oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves phosphatidylinositol 3-kinase/Akt and downstream signaling, which lead to neuronal survival. Genetically modified mice or rats that over-express or are deficient in superoxide dismutase have provided strong evidence in support of the role of mitochondrial dysfunction and oxidative stress as determinants of neuronal death/survival after stroke and neurodegeneration.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Mitocondrias/fisiología , Neuronas/fisiología , Estrés Oxidativo/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas Portadoras/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Humanos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal/fisiología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Proteína X Asociada a bcl-2/fisiología
19.
J Cereb Blood Flow Metab ; 28(1): 44-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17457363

RESUMEN

The serine-threonine kinase, Akt, plays an important role in the cell survival signaling pathway. A proline-rich Akt substrate, PRAS40, has been characterized, and an increase in phospho-PRAS40 (pPRAS40) is neuroprotective after transient focal cerebral ischemia. However, the involvement of PRAS40 in the cell death/survival pathway after spinal cord injury (SCI) is unclear. Liposome-mediated PRAS40 transfection was performed to study whether overexpression of pPRAS40 is neuroprotective. We further examined the expression of pPRAS40 after SCI by immunohistochemistry and Western blot using copper/zinc-superoxide dismutase (SOD1) transgenic (Tg) rats and wild-type (Wt) littermates. We then examined the relationship between PRAS40 and Akt by injection of LY294002, a phosphatidylinositol 3-kinase (PI3K) pathway inhibitor, or Akt inhibitor IV, a compound that inhibits Akt activation after SCI. Our data demonstrated that increased pPRAS40 resulted in survival of more motor neurons compared with control complementary DNA transfection. Phosphorylated PRAS40 increased in the Wt rats after SCI, whereas there was a greater and prolonged increase in the SOD1 Tg rats. Coimmunoprecipitation showed that binding of pPRAS40 with 14-3-3 increased 1 day after SCI in the Wt rats, whereas there was a significant increase in the Tg rats. The inhibitor studies showed that phospho-Akt and pPRAS40 were decreased after injection of LY294002 or Akt inhibitor IV. We conclude that an increase in pPRAS40 by transfection after SCI results in survival of motor neurons, and overexpression of SOD1 in the Tg rats results in an increase in endogenous pPRAS40 and a decrease in motor neuron death through the PI3K/Akt pathway.


Asunto(s)
Neuronas Motoras/metabolismo , Fármacos Neuroprotectores/metabolismo , Fosfoproteínas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Superóxido Dismutasa/biosíntesis , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Modificados Genéticamente , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Cromonas/farmacología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Morfolinas/farmacología , Neuronas Motoras/patología , Fosfatidilinositol 3-Quinasas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factores de Tiempo , Transfección , Transgenes
20.
J Neurotrauma ; 25(3): 184-95, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18352832

RESUMEN

Matrix metalloproteinase-9 (MMP-9) activation plays an important role in blood-brain barrier (BBB) dysfunction after central nervous system injury. Oxidative stress is also implicated in the pathogenesis after cerebral ischemia and spinal cord injury (SCI), but the relationship between MMP-9 activation and oxidative stress after SCI has not yet been clarified. We examined MMP-9 expression after SCI using copper/zinc-superoxide dismutase (SOD1) transgenic (Tg) rats. Our results show that MMP-9 activity significantly increased after SCI in both SOD1 Tg rats and their wild-type (Wt) littermates, although the increase was less in the SOD1 Tg rats. This pattern of MMP-9 expression was further confirmed by immunostaining and Western blot analysis. In situ zymography showed that gelatinolytic activity increased after SCI in the Wt rats, while the increase was less in the Tg rats. Evans blue extravasation increased in both the Wt and Tg rats, but was less in the SOD1 Tg rats. Inhibitor studies showed that, with an intrathecal injection of SB-3CT (a selective MMP-2/MMP-9 inhibitor), the MMP activity, Evans blue extravasation, and apoptotic cell death decreased after SCI. We conclude that increased oxidative stress after SCI leads to MMP-9 upregulation, BBB disruption, and apoptosis, and that overexpression of SOD1 in Tg rats decreases oxidative stress and further attenuates MMP-9 mediated BBB disruption.


Asunto(s)
Barrera Hematoencefálica/enzimología , Células Endoteliales/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Degeneración Nerviosa/enzimología , Estrés Oxidativo/genética , Traumatismos de la Médula Espinal/enzimología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Barrera Hematoencefálica/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Inhibidores Enzimáticos/farmacología , Azul de Evans/farmacocinética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Microcirculación/enzimología , Microcirculación/patología , Microcirculación/fisiopatología , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Ratas , Ratas Sprague-Dawley , Médula Espinal/irrigación sanguínea , Médula Espinal/enzimología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA