Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2301954120, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639595

RESUMEN

Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.

2.
Sci Rep ; 3: 2013, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774736

RESUMEN

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.

3.
Philos Trans A Math Phys Eng Sci ; 367(1886): 157-68, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-18854304

RESUMEN

Ostracode magnesium/calcium (Mg/Ca)-based bottom-water temperatures were combined with benthic foraminiferal oxygen isotopes in order to quantify the oxygen isotopic composition of seawater, and estimate continental ice volume and sea-level variability during the Mid-Pliocene warm period, ca 3.3-3.0Ma. Results indicate that, following a low stand of approximately 65m below present at marine isotope stage (MIS) M2 (ca 3.3Ma), sea level generally fluctuated by 20-30m above and below a mean value similar to present-day sea level. In addition to the low-stand event at MIS M2, significant low stands occurred at MIS KM2 (-40 m), G22 (-40m) and G16 (-60m). Six high stands of +10m or more above present day were also observed; four events (+10, +25,+15 and +30 m) from MIS M1 to KM3, a high stand of +15m at MIS K1, and a high stand of +25m at MIS G17. These results indicate that continental ice volume varied significantly during the Mid-Pliocene warm period and that at times there were considerable reductions of Antarctic ice.

4.
Philos Trans A Math Phys Eng Sci ; 367(1886): 69-84, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-18852090

RESUMEN

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA