Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(2): e0189923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294245

RESUMEN

After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.


Asunto(s)
Citoplasma , Herpesvirus Humano 4 , Proteínas Serina-Treonina Quinasas , Proteínas Virales , Virión , Ensamble de Virus , Liberación del Virus , Proteínas Activadoras de ras GTPasa , Humanos , Proteínas de la Cápside/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Virales/metabolismo , Virión/química , Virión/crecimiento & desarrollo , Virión/metabolismo , Ensamble de Virus/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732143

RESUMEN

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Asunto(s)
Modelos Animales de Enfermedad , Tratamiento con Ondas de Choque Extracorpóreas , Contracción Muscular , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Femenino , Ratas , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/terapia , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria Hiperactiva/etiología , Ovariectomía , Ratas Sprague-Dawley , Ovario/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613882

RESUMEN

Lung cancer is one of the deadliest cancers worldwide, including in Taiwan. The poor prognosis of the advanced lung cancer lies in delayed diagnosis and non-druggable targets. It is worth paying more attention to these ongoing issues. Public databases and an in-house cohort were used for validation. The KM plotter was utilized to discover the clinical significance. GSEA and GSVA were adopted for a functional pathway survey. Molecular biological methods, including proliferation, migration, and the EMT methods, were used for verification. Based on public databases, the increased expression of Ladinin 1 (LAD1) was presented in tumor and metastatic sites. Furthermore, an in-house cohort revealed a higher intensity of LAD1 in tumor rather than in normal parts. The greater the expression of LAD1 was, the shorter the duration of lung adenocarcinoma (LUAD) patient survival. Moreover, the association of B3GNT3 with LAD1 affected the survival of LUAD patients. Functional analyses using GSEA and GSVA revealed the associations with survival, migration, invasion, and EMT. Biologic functions supported the roles of LAD1 in proliferation via the cell cycle and migration in EMT. This study reveals that LAD1 plays a major role in regulating proliferation and migration in lung cancer and impacts survival in LUAD. It is worth investing in further studies and in the development of drugs targeting LAD1.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Glicoproteínas de Membrana , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/genética , Taiwán
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121246

RESUMEN

Lung cancer is one of the leading causes of cancer-related death globally, thus elucidation of its molecular pathology is highly highlighted. Aberrant alterations of the spindle assembly checkpoint (SAC) are implicated in the development of cancer due to abnormal cell division. TTK (Thr/Tyr kinase), a dual serine/threonine kinase, is considered to act as a cancer promoter by controlling SAC. However, the mechanistic details of how TTK-mediated signaling network supports cancer development is still a mystery. Here, we found that TTK was upregulated in the tumor tissue of patients with lung cancer, and enhanced tumor growth and metastasis in vitro and in vivo. Mechanistically, TTK exerted a significant enhancement in cancer growth by neurotensin (NTS) upregulation, and subsequently increased the expression of cyclin A and cdk2, which was resulting in the increase of DNA synthesis. In contrast, TTK increased cell migration and epithelial-to-mesenchymal transition (EMT) by enhancing the expression of dihydropyrimidinase-like 3 (DPYSL3) followed by the increase of snail-regulated EMT, thus reinforce metastatic potential and ultimately tumor metastasis. TTK and DPYSL3 upregulation was positively correlated with a poor clinical outcome in patients with lung cancer. Together, our findings revealed a novel mechanism underlying the oncogenic potential effect of TTK and clarified its downstream factors NTS and DPYSL3 might represent a novel, promising candidate oncogenes with potential therapeutic vulnerabilities in lung cancer.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Musculares/metabolismo , Neurotensina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Regulación hacia Arriba/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones Desnudos , Modelos Biológicos , Metástasis de la Neoplasia , Pronóstico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores
5.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540416

RESUMEN

We investigated whether magnesium sulfate (MgSO4) mitigated pulmonary hypertension progression in rats. Pulmonary hypertension was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg). MgSO4 (100 mg/kg) was intraperitoneally administered daily for 3 weeks, from the seventh day after monocrotaline injection. Adult male rats were randomized into monocrotaline (MCT) or monocrotaline plus MgSO4 (MM) groups (n = 15 per group); control groups were maintained simultaneously. For analysis, surviving rats were euthanized on the 28th day after receiving monocrotaline. The survival rate was higher in the MM group than in the MCT group (100% versus 73.3%, p = 0.043). Levels of pulmonary artery wall thickening, α-smooth muscle actin upregulation, right ventricular systolic pressure increase, and right ventricular hypertrophy were lower in the MM group than in the MCT group (all p < 0.05). Levels of lipid peroxidation, mitochondrial injury, inflammasomes and cytokine upregulation, and apoptosis in the lungs and right ventricle were lower in the MM group than in the MCT group (all p < 0.05). Notably, the mitigation effects of MgSO4 on pulmonary artery wall thickening and right ventricular hypertrophy were counteracted by exogenous calcium chloride. In conclusion, MgSO4 mitigates pulmonary hypertension progression, possibly by antagonizing calcium.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Sulfato de Magnesio/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Progresión de la Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Masculino , Monocrotalina , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Ratas , Ratas Sprague-Dawley
6.
J Surg Res ; 221: 190-195, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29229127

RESUMEN

BACKGROUND: Vascular hyporeactivity contributes to hemodynamic alterations and circulatory failure in severe sepsis. Among the identified mechanisms, inflammation and oxidative stress are the most crucial ones in mediating the development of vascular hyporeactivity induced by sepsis. Platonin, a photosensitive dye and an antioxidant, possesses potent antiinflammation effects. We elucidated whether platonin could mitigate vascular hyporeactivity of thoracic aorta in septic rats. MATERIAL AND METHODS: Adult male Sprague-Dawley rats were randomized to receive sham operation (Sham), Sham plus platonin (100 µg/kg), cecal ligation and puncture (CLP), or CLP plus platonin (10, 50, or 100 µg/kg) and designated as the Sham, P, CLP, CLP + P(10), CLP + P(50), and CLP + P(100) group, respectively (n = 6 in each group). After maintaining for 12 hours, surviving rats were euthanized and thoracic aorta was isolated and vascular reactivity of aortic rings was determined. RESULTS: Vascular reactivity induced by vasoconstrictors phenylephrine and angiotensin II of the Sham and the P groups (n = 6 in both groups) were similar, whereas vascular reactivity of the CLP group (n = 5) were significantly lower than those of the Sham group (both P < 0.001). Of note, vascular reactivity induced by phenylephrine and angiotensin II of the CLP + P(10) group (n = 5) and the CLP group were not significantly different. In contrast, vascular reactivity induced by phenylephrine and angiotensin II of the CLP + P(50) and the CLP + P(100) groups (n = 6 in both groups) were significantly higher than those of the CLP group (phenylephrine: P = 0.024 and 0.017; angiotensin II: P = 0.031 and 0.036). CONCLUSION: Platonin could mitigate vascular hyporeactivity of thoracic aorta in septic rats.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Sepsis/fisiopatología , Tiazoles/uso terapéutico , Vasoconstricción/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Evaluación Preclínica de Medicamentos , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Tiazoles/farmacología
7.
J Appl Toxicol ; 35(3): 287-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25186829

RESUMEN

The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment.


Asunto(s)
Compuestos de Boro/toxicidad , Cafeína/toxicidad , Calcio/metabolismo , Citosol/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Pez Cebra/embriología , Animales , Citosol/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Microscopía Electrónica de Transmisión , Miofibrillas/ultraestructura
8.
Molecules ; 20(7): 12512-24, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26184137

RESUMEN

The aim of this study was to investigate novel chalcones with potent angiogenic activities in vivo. Chalcone-based derivatives were evaluated using a transgenic zebrafish line with fluorescent vessels to real-time monitor the effect on angiogenesis. Results showed that the chalcone analogues did not possess anti-angiogenic effect on zebrafish vasculatures; instead, some of them displayed potent pro-angiogenic effects on the formation of the sub-intestinal vein. Similar pro-angiogenic effects can also be seen on wild type zebrafish embryos. Moreover, the expression of vegfa, the major regulator for angiogenesis, was also upregulated in their treatment. Taken together, we have synthesized and identified a series of novel chalcone-based derivatives as potent in vivo pro-angiogenic compounds. These novel compounds hold potential for therapeutic angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Chalconas/farmacología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/agonistas , Proteínas de Pez Cebra/agonistas , Inductores de la Angiogénesis/síntesis química , Animales , Animales Modificados Genéticamente , Chalconas/síntesis química , Embrión no Mamífero , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Estructura Molecular , Morfogénesis/efectos de los fármacos , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Mar Drugs ; 12(5): 3072-90, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24857964

RESUMEN

A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%-87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%-95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase IIα. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Terpenos/farmacología , Animales , Antineoplásicos/química , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/biosíntesis , Línea Celular Tumoral , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Poríferos/química , Inhibidores de Topoisomerasa II/farmacología
10.
Molecules ; 19(1): 641-50, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24402197

RESUMEN

The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a-d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone (compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos.


Asunto(s)
Anomalías Inducidas por Medicamentos/patología , Chalcona/análogos & derivados , Chalcona/toxicidad , Fibras Musculares Esqueléticas/patología , Teratógenos/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/anomalías , Pez Cebra
11.
Medicine (Baltimore) ; 103(1): e34518, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181251

RESUMEN

RATIONALE: Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor for which maximal tumor resection plays an important role in the treatment strategy. 5-aminolevulinic (5-ALA) is a powerful tool in fluorescence-guided surgery for GBM. However, 5-ALA- enhancing lesion can also be observed with different etiologies. PATIENTS CONCERNS: Three cases of 5-ALA-enhancing lesions with etiologies different from glioma. DIAGNOSES: The final diagnosis was abscess in 1 patient and diffuse large B-cell in the other 2 patients. INTERVENTIONS: Three patients received 5-aminolevulinic acid-guided tumor resection under microscope with intraoperative neuromonitoring. OUTCOMES: All of our patients showed improvement or stable neurological function outcomes. The final pathology revealed etiologies different from GBM. LESSONS: The 5-aminolevulinic acid fluorescence-guided surgery has demonstrated its maximal extent of resection and safety profile in patients with high-grade glioma. Non-glioma etiologies may also mimic GBM in 5-ALA-guided surgeries. Therefore, patient history taking and consideration of brain images are necessary for the interpretation of 5-ALA-enhanced lesions.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/cirugía , Ácido Aminolevulínico , Encéfalo/diagnóstico por imagen , Absceso
12.
Am J Cancer Res ; 14(4): 1561-1576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726259

RESUMEN

Lung squamous cell carcinoma (LUSC) remains a difficult-to-treat disease with a poor prognosis. While prominin-1 (PROM1/CD-133) is largely investigated in a variety of malignancies, the role of prominin-2 (PROM2), the other member of the prominin family, has not been studied in LUSC. Transcriptomic data derived from matched tumor and adjacent non-tumorous lung tissues of LUSC patients were employed to conduct an in-depth analysis of the genetic and epigenetic regulation of prominin genes within LUSC, utilizing bioinformatic approaches. Furthermore, cellular behavior experiments were executed to discern the biological functions of PROM2. It was observed that PROM2, in contrast to PROM1, exhibited significant upregulation and overexpression at both the mRNA and protein levels in LUSC, and this upregulation was correlated with shortened patient survival. Transcriptomic analysis unveiled DNA methylation as an epigenetic regulatory mechanism associated with PROM2 expression. Notably, two transcription factors, CBFB and NRIP1, were identified as potential regulators of PROM2 expression. Subsequent in vitro investigations demonstrated that knocking down PROM2 led to the inhibition of cancer cell migration and the epithelial-to-mesenchymal transition (EMT). In summary, the pronounced upregulation of PROM2 in LUSC patients was linked to an unfavorable prognosis, possibly attributable to its influence on cancer cell migration and EMT. These findings suggest that PROM2 could serve as a promising diagnostic biomarker and therapeutic target in the management of LUSC. Consequently, further research into the mechanistic aspects and potential therapeutic interventions targeting PROM2 is warranted in the clinical context.

13.
J Pers Med ; 14(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38929840

RESUMEN

This study compared the therapeutic effects of engineered exosomes derived from RAW264.7 cells overexpressing hsa-let-7i-5p (engineered exosomes) to exosomes from human placenta-derived mesenchymal stem cells (hpMSC exosomes) against sepsis-induced acute lung injury. Adult male C57BL/6 mice were divided into lipopolysaccharide (LPS), LPS plus engineered exosome (LEExo), or LPS plus hpMSC exosome (LMExo) groups, alongside control groups. The results showed that lung injury scores (based on pathohistological characteristics) and the levels of lung function alterations, tissue edema, and leukocyte infiltration in LEExo and LMExo groups were comparable and significantly lower than in the LPS group (all p < 0.05). Furthermore, the levels of inflammation (nuclear factor-κB activation, cytokine upregulation), macrophage activation (hypoxia-inducible factor-1α activation, M1 phase polarization), oxidation, and apoptosis were diminished in LEExo and LMExo groups compared to the LPS group (all p < 0.05). Inhibition of hsa-let-7i-5p attenuated the therapeutic effects of both engineered and hpMSC exosomes. These findings underscore the potent therapeutic capacity of engineered exosomes enriched with hsa-let-7i-5p and their potential as an alternative to hpMSC exosomes for sepsis treatment. Continued research into the mechanisms of action and optimization of engineered exosomes could pave the way for their future clinical application.

14.
Mol Med Rep ; 29(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997813

RESUMEN

Lung adenocarcinoma (LUAD) is one of the deadliest cancers regarding both mortality rate and number of deaths and warrants greater effort in the development of potential therapeutic targets. The enhancer of rudimentary homolog (ERH) has been implicated in the promotion and progression of certain types of cancer. In the present study, ERH was assessed for its expression pattern and survival association with LUAD in public transcriptomic and proteomic databases. Bioinformatic methods and data from websites, including University of Alabama at Birmingham CANcer data analysis Portal and The Cancer Genome Atlas, were utilized to demonstrate the functional behaviors and corresponding pathways of ERH in LUAD. Human A549 and CL1­0 cell lines were used to validate the findings via functional assays. It was demonstrated that the expression of ERH, at both the transcriptomic and proteomic levels, was higher in LUAD compared with in adjacent non­tumor lung tissue and was associated with worse survival prognosis. Moreover, high ERH expression was correlated with more aggressive functional states, such as cell cycle and invasion in LUAD, and the positive ERH­correlated gene set was associated with worse survival and an immunosuppressive tumor microenvironment. Small nuclear ribonucleoprotein polypeptide G was identified as a molecule that potentially interacted with ERH. Lastly, it was demonstrated that ERH promoted epithelial­mesenchymal transition and cell migration in vitro, but not proliferation. In conclusion, higher expression of ERH in LUAD may facilitate cancer progression and confer worse outcomes. Further deep investigation into the role of ERH in LUAD is needed.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Proteómica , Microambiente Tumoral
15.
Am J Cancer Res ; 14(2): 854-868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455397

RESUMEN

The poor outcome of patients with lung adenocarcinoma (LUAD) highlights the importance to identify novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUAD. Here, we aimed to investigate the role of ENTPD3-AS1 (ENTPD3 Antisense RNA 1) in LUAD and to explore its potential mechanisms by performing comprehensive bioinformatic analyses. The regulatory effect of ENTPD3-AS1 on the expression of NR3C1 was validated by siRNA-based silencing. The effect of miR-421 on the modulation of NR3C1 was determined by miRNA mimics and inhibitors transfection. ENTPD3-AS1 was expressed at lower levels in tumor parts and negatively correlated with unfavorable prognosis in LUAD patients. It exerted functions as a tumor suppressor gene by competitively binding to oncomir, miR-421, thereby attenuating NR3C1 expression. Transfection of lung cancer A549 cells with miR-421 mimics decreased the expression of NR3C1. Transfection of lung cancer A549 cells with miR-421 inhibitors increased the expression of NR3C1 with lower cellular functions as proliferation and migration via epithelial-mesenchymal transition. In addition, inhibition of ENTPD3-AS1 by siRNA transfection decreased the levels of NR3C1, supporting the ENTPD3-AS1/miR-421/NR3C1 cascade. Moreover, the bioinformatic analysis also showed that ENTPD3-AS1 could interact with the RNA-binding proteins (RBPs), CELF2 and QKI, consequently regulating RNA expression and processing. Taken together, we identified that ENTPD3-AS1 and its indirect target NR3C1 can act as novel biomarkers for determining the prognosis of patients with LUAD, and further study is required.

16.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760173

RESUMEN

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.


Asunto(s)
Actinas , Neoplasias de la Mama , Neoplasias Pulmonares , Proteínas de Microfilamentos , Metástasis de la Neoplasia , Animales , Actinas/metabolismo , Ratones , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Movimiento Celular/genética , Citoesqueleto de Actina/metabolismo , Proliferación Celular/genética , Adhesión Celular/genética , Unión Proteica
17.
J Sex Med ; 10(5): 1278-90, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23445432

RESUMEN

INTRODUCTION: The roles of testosterone and orchiectomy on male bladder subjected to ischemic/reperfusion (I/R) injuries received little attention. To fill this gap, the present study intended to examine testosterone and orchiectomy effects on male rabbits subjected to I/R damages. AIM: To elucidate the effects of testosterone and orchiectomy on contractile response, bladder morphology, interstitial fibrosis, and oxidative stress in male rabbit bladder subjected to I/R surgery. METHODS: Male New Zealand rabbits were distributed into five groups as follows: Group 1 received sham surgical procedure. In group 2, I/R surgery was performed. In group 3, testosterone (100 µg/kg/day) was intramuscularly injected prior to I/R surgery. In group 4, orchiectomy was performed prior to I/R surgery. In group 5, orchiectomy was performed with subsequent testosterone administration, followed by I/R surgery. All the rabbits were euthanized 7 days after I/R. Comparative studies were analyzed to elucidate the effects of testosterone and orchiectomy on bladder dysfunction subjected to I/R injuries. MAIN OUTCOME MEASURES: Bladder contractile function was evaluated. Masson's trichrome staining and immunohistochemical studies were performed to evaluate bladder morphology and intramural nerve terminals. Western blotting was examined to investigate the expressions of fibrosis and oxidative stress markers. RESULTS: I/R surgery significantly decreased bladder contractility in response to various stimulations with and without testosterone treatment. I/R damages decreased bladder nerve density with and without testosterone. The expressions of fibrosis and oxidative stress-related proteins were increased by I/R injuries with or without testosterone treatment. Testosterone depletion significantly decreased the expressions of transforming growth factor-ß and fibronectin expressions after I/R injury. Supraphysiological testosterone treatment after orchiectomy greatly increased the expressions of these fibrosis proteins; however, orchiectomy alone ameliorated I/R injuries. CONCLUSIONS: Testosterone treatment or orchiectomy affected I/R-induced bladder damages in male rabbits. Orchiectomy decreased the level of fibrosis and oxidative stress markers and increased neurofilament densities. Supraphysiological exogenous testosterone administration after orchiectomy further exacerbated such detrimental effects of I/R.


Asunto(s)
Contracción Muscular/efectos de los fármacos , Orquiectomía , Daño por Reperfusión/fisiopatología , Testosterona/farmacología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Animales , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Conejos , Vejiga Urinaria/irrigación sanguínea
18.
Thorac Cancer ; 14(4): 407-418, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516959

RESUMEN

BACKGROUND: The poor outcome of patients with lung squamous cell carcinoma (LUSC) highlights the importance of the identification of novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUSC. METHODS: Here, we aimed to investigate the role of LINC02323 in LUSC and its potential mechanisms by performing comprehensive bioinformatic analyses. RESULTS: LINC02323 was elevated and positively associated with unfavorable prognosis of LUSC patients. LINC02323 exerted oncogenic function by competitively binding to miR-1343-3p and miR-6783-3p, thereby upregulating L1CAM expression. Indeed, we also determined that LINC02323 could interact with the RNA-binding protein DDX3X, which regulates various stages of RNA expression and processing. CONCLUSION: Taken together, we identified that LINC02323 and its indirect target L1CAM can act as novel biomarkers for determining the prognosis of patients with LUSC and thus deserves further study.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroARNs , Molécula L1 de Adhesión de Célula Nerviosa , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Regulación Neoplásica de la Expresión Génica , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Pronóstico , ARN Largo no Codificante/genética , Pulmón/patología
19.
Theranostics ; 13(13): 4412-4429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649596

RESUMEN

Background: Lung cancer is associated with a high mortality rate and often complicated with malignant pleural effusion (MPE), which has a very poor clinical outcome with a short life expectancy. However, our understanding of cell-specific mechanisms underlying the pathobiology of pleural metastasis remains incomplete. Methods: We analyzed single-cell transcriptomes of cells in pleural effusion collected from patients with lung cancer and congestive heart failure (as a control), respectively. Soluble and complement factors were measured using a multiplex cytokine bead assay. The role of ferroptosis was evaluated by GPX4 small interfering RNA (siRNA) transfection and overexpression. Results: We found that the mesothelial-mesenchymal transition (MesoMT) of the pleural mesothelial cells contributed to pleural metastasis, which was validated by lung cancer/mesothelial cell co-culture experiments. The ferroptosis resistance that protected cancer from death which was secondary to extracellular matrix detachment was critical for pleural metastasis. We found a universal presence of immune-suppressive lipid-associated tumor-associated macrophages (LA-TAMs) with complement cascade alteration in the MPE of the lung cancer patients. Specifically, upregulated complement factors were also found in the MPE, and C5 was associated with poor overall survival in the lung cancer patients with epidermal growth factor receptor mutation. Plasmacytoid dendritic cells (pDCs) exhibited a dysfunctional phenotype and pro-tumorigenic feature in the primary cancer. High expression of the gene set extracted from pDCs was associated with a poor prognosis in the lung cancer patients. Receptor-ligand interaction analysis revealed that the pleural metastatic niche was aggravated by cross-talk between mesothelial cells-cancer cells/immune cells via TNC and ICAM1. Conclusions: Taken together, our results highlight cell-specific mechanisms involved in the pathobiological development of pleural metastasis in lung cancer. These results provide a large-scale and high-dimensional characterization of the pleural microenvironment and offer a useful resource for the future development of therapeutic drugs in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Derrame Pleural , Humanos , Neoplasias Pulmonares/genética , Carcinogénesis , Análisis de Secuencia de ARN , Receptores ErbB , Microambiente Tumoral/genética
20.
Cell Death Dis ; 14(7): 442, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460555

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, resulting in a huge socio-economic impact. Kidney is a highly complex organ and the pathogenesis underlying kidney organization involves complex cell-to-cell interaction within the heterogeneous kidney milieu. Advanced single-cell RNA sequencing (scRNA-seq) could reveal the complex architecture and interaction with the microenvironment in early DKD. We used scRNA-seq to investigate early changes in the kidney of db/m mice and db/db mice at the 14th week. Uniform Manifold Approximation and Projection were applied to classify cells into different clusters at a proper resolution. Weighted gene co-expression network analysis was used to identify the key molecules specifically expressed in kidney tubules. Information of cell-cell communication within the kidney was obtained using receptor-ligand pairing resources. In vitro model, human subjects, and co-detection by indexing staining were used to identify the pathophysiologic role of the hub genes in DKD. Among four distinct subsets of the proximal tubule (PT), lower percentages of proliferative PT and PT containing AQP4 expression (PTAQP4+) in db/db mice induced impaired cell repair activity and dysfunction of renin-angiotensin system modulation in early DKD. We found that ferroptosis was involved in DKD progression, and ceruloplasmin acted as a central regulator of the induction of ferroptosis in PTAQP4+. In addition, lower percentages of thick ascending limbs and collecting ducts with impaired metabolism function were also critical pathogenic features in the kidney of db/db mice. Secreted phosphoprotein 1 (SPP1) mediated pathogenic cross-talk in the tubular microenvironment, as validated by a correlation between urinary SPP1/Cr level and tubular injury. Finally, mesangial cell-derived semaphorin 3C (SEMA3C) further promoted endothelium-mesenchymal transition in glomerular endothelial cells through NRP1 and NRP2, and urinary SEMA3C/Cr level was positively correlated with glomerular injury. These data identified the hub genes involved in pathophysiologic changes within the microenvironment of early DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Transcriptoma/genética , Glomérulos Renales/metabolismo , Riñón/patología , Diabetes Mellitus/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA