Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 164: 105406, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359913

RESUMEN

It is well known that free fatty acids (FFAs) have beneficial effects on the skeletal system, however, which fatty acid sensing GPCR(s) and how the GPCR(s) regulating cartilage development and osteoarthritis (OA) pathogenesis is largely unknown. In this study, we found Gpr84, a receptor for medium-chain FFAs (MCFA), was the only FFA-sensing GPCR in human and mouse chondrocytes that exhibited elevated expression when stimulated by interleukin (IL)-1ß. Gpr84-deficiency upregulated cartilage catabolic regulator expression and downregulated anabolic factor expression in the IL-1ß-induced cell model and the destabilization of the medial meniscus (DMM)-induced OA mouse model. Gpr84-/- mice exhibited an aggravated OA phenotype characterized by severe cartilage degradation, osteophyte formation and subchondral bone sclerosis. Moreover, activating Gpr84 directly enhanced cartilage extracellular matrix (ECM) generation while knockout of Gpr84 suppressed ECM-related gene expression. Especially, the agonists of GPR84 protected human OA cartilage explants against degeneration by inducing cartilage anabolic factor expression. At the molecular level, GPR84 activation inhibited IL-1ß-induced NF-κB signaling pathway. Furthermore, deletion of Gpr84 had little effect on articular and spine cartilaginous tissues during skeletal growth. Together, all of our results demonstrated that fatty acid sensing GPCR (Gpr84) signaling played a critical role in OA pathogenesis, and activation of GPR84 or MCFA supplementation has potential in preventing the pathogenesis and progression of OA without severe cartilaginous side effect.


Asunto(s)
Osteoartritis/genética , Receptores Acoplados a Proteínas G/genética , Animales , Artralgia/genética , Artralgia/metabolismo , Artralgia/patología , Cartílago/metabolismo , Cartílago/patología , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ácidos Grasos/metabolismo , Homeostasis , Humanos , Interleucina-1beta/farmacología , Articulación de la Rodilla/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Columna Vertebral/patología , Tibia/patología
2.
Drug Des Devel Ther ; 16: 4079-4089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465266

RESUMEN

Background: Colorectal cancer (CRC) is a multifactorial disease and one of the most common malignancies worldwide. Salidroside (Sal) is a plant with a wide range of pharmacological effects and plays an important role in the treatment of many diseases, and is considered a new hope for the treatment of tumors. The purpose of this study was to investigate the effect of the combination of Sal and paclitaxel (Pac) on colorectal cancer cells and its mechanism of action. Methods: The effects of different mass concentrations of Sal, Pac, and the combination intervened in the cells for 48 h were examined using the CCK8 method. The inhibition rate was obtained, and the optimal concentration of the respective drug group was screened. The proliferative capacity of the respective group was obtained. Subsequently, the results of apoptosis, cloning, migration, invasion, and angiogenesis were observed through cell morphological analysis (shape observation and Hoechst staining), colony formation assay, cell scratching assay, Transwell, angiogenesis assay, and protein immunoblotting (Western blotting) to detect the expression of epithelial-mesenchymal transition (EMT)-associated proteins and PI3K pathway-associated proteins. Results: Different concentrations of Sal, Pac, and the combined application had significant effects in inhibiting cells in a concentration-dependent manner. Compared with the control group, the Sal group, the Pac group, and the combination group significantly inhibited the clonal number, migration, invasion, and tube-forming ability of colorectal cancer cells. Besides, the combined application had a better effect than the Sal and Pac groups. The apoptosis level was up-regulated in all drug groups, and the up-regulation was more significant in the combination group. The expression of E-cad protein was up-regulated, the expression of N-cad and Vim protein was down-regulated, and the expression of PI3K and AKT phosphorylation was down-regulated in the respective group, and the difference was more significant in the combination group compared with the group of individual drugs. Conclusion: The combined application of Sal and Pac significantly can decrease the survival rate of colorectal cancer cells, and the mechanism may be correlated with the blocking of the PI3K/AKT pathway, thus inhibiting EMT.


Asunto(s)
Neoplasias Colorrectales , Paclitaxel , Humanos , Paclitaxel/farmacología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Mesodermo , Neoplasias Colorrectales/tratamiento farmacológico , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA