Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(1): 53-63, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563184

RESUMEN

Atmospheric models of secondary organic aerosol (OA) (SOA) typically rely on parameters derived from environmental chambers. Chambers are subject to experimental artifacts, including losses of (1) particles to the walls (PWL), (2) vapors to the particles on the wall (V2PWL), and (3) vapors to the wall directly (VWL). We present a method for deriving artifact-corrected SOA parameters and translating these to volatility basis set (VBS) parameters for use in chemical transport models (CTMs). Our process involves combining a box model that accounts for chamber artifacts (Statistical Oxidation Model with a TwO-Moment Aerosol Sectional model (SOM-TOMAS)) with a pseudo-atmospheric simulation to develop VBS parameters that are fit across a range of OA mass concentrations. We found that VWL led to the highest percentage change in chamber SOA mass yields (high NOx: 36-680%; low NOx: 55-250%), followed by PWL (high NOx: 8-39%; low NOx: 10-37%), while the effects of V2PWL are negligible. In contrast to earlier work that assumed that V2PWL was a meaningful loss pathway, we show that V2PWL is an unimportant SOA loss pathway and can be ignored when analyzing chamber data. Using our updated VBS parameters, we found that not accounting for VWL may lead surface-level OA to be underestimated by 24% (0.25 µg m-3) as a global average or up to 130% (9.0 µg m-3) in regions of high biogenic or anthropogenic activity. Finally, we found that accurately accounting for PWL and VWL improves model-measurement agreement for fine mode aerosol mass concentrations (PM2.5) in the GEOS-Chem model.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Artefactos , Gases , Modelos Químicos , Aerosoles/análisis
2.
Pharm Res ; 39(12): 3047-3061, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36071354

RESUMEN

Dry powder inhalation formulations have become increasingly popular for local and systemic delivery of small molecules and biotherapeutics. Powder formulations provide distinct advantages over liquid formulations such as elimination of cold chain due to room temperature stability, improved portability, and the potential for increasing patient adherence. To become a viable product, it is essential to develop formulations that are stable (physically, chemically and/or biologically) and inhalable over the shelf-life. Physical particulate properties such as particle size, morphology and density, as well as chemical properties can significantly impact aerosol performance of the powder. This review will cover these critical attributes that can be engineered to enhance the dispersibility of inhalation powder formulations. Challenges in particle engineering for biotherapeutics will be assessed, followed by formulation strategies for overcoming the hurdles. Finally, the review will discuss recent examples of successful dry powder biotherapeutic formulations for inhalation delivery that have been clinically assessed.


Asunto(s)
Inhaladores de Polvo Seco , Humanos , Polvos/química , Administración por Inhalación , Aerosoles/química , Tamaño de la Partícula
3.
Environ Sci Technol ; 56(19): 13888-13899, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36112784

RESUMEN

Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ-Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectrometer with a filter inlet for gases and aerosols (FIGAERO-CIMS) and an aerosol mass spectrometer (AMS), deployed during the Arctic Ocean 2018 expedition onboard the Swedish icebreaker Oden. We find that the hygroscopicity parameter κ of the total aerosol is 0.39 ± 0.19 (mean ± std). The predicted activation diameter of ∼25 to 130 nm particles is overestimated by 5%, leading to an underestimation of the cloud condensation nuclei (CCN) number concentration by 4-8%. From this, we conclude that the aerosol in the High Arctic late summer is acidic and therefore highly cloud active, with a substantial CCN contribution from Aitken mode particles. Variability in the predicted activation diameter is addressed mainly as a result of uncertainties in the aerosol size distribution measurements. The organic κ was on average 0.13, close to the commonly assumed κ of 0.1, and therefore did not significantly influence the predictions. These conclusions are supported by laboratory experiments of the activation potential of seven organic compounds selected as representative of the measured aerosol.

4.
BMC Med Inform Decis Mak ; 22(1): 339, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550466

RESUMEN

BACKGROUND: Assessment and feedback is a common implementation strategy to improve healthcare provider fidelity to clinical guidelines. For immunization guidelines, fidelity is often measured with doses administered during eligible visits. Adding a patient refusal measure captures provider fidelity more completely (i.e., all instances of a provider recommending a vaccine, resulting in vaccination or refusal) and enables providers to track patient vaccine hesitancy patterns. However, many electronic health record (EHR) systems have no structured field to document multiple instances of refusals for specific vaccines, and existing billing codes for refusal are not vaccine specific. This study assessed the feasibility of a novel method for refusal documentation used in a study focused on human papillomavirus (HPV) vaccine. METHODS: An observational, descriptive-comparative, mixed-methods study design was used to conduct secondary data analysis from an implementation-effectiveness trial. The parent trial compared coach-based versus web-based practice facilitation, including assessment and feedback, to increase HPV vaccination in 21 community-based private pediatric practices. Providers were instructed to document initial HPV vaccine refusals in the EHR's immunization forms and subsequent refusals using dummy procedure codes, for use in assessment and feedback reports. This analysis examined adoption and maintenance of the refusal documentation method during eligible well visits, identified barriers and facilitators to documentation and described demographic patterns in patient refusals. RESULTS: Seven practices adopted the refusal documentation method. Among adopter practices, documented refusals started at 2.4% of eligible well visits at baseline, increased to 14.2% at the start of implementation, peaked at 24.0%, then declined to 18.8%. Barriers to refusal documentation included low prioritization, workflow integration and complication of the billing process. Facilitators included high motivation, documentation instructions and coach support. Among adopter practices, odds of refusing HPV vaccine were 25% higher for patients aged 15-17 years versus 11-12 years, and 18% lower for males versus females. CONCLUSIONS: We demonstrated the value of patient refusal documentation for measuring HPV vaccination guideline fidelity and ways that it can be improved in future research. Creation of vaccine-specific refusal billing codes or EHR adaptations to enable documenting multiple instances of specific vaccine refusals would facilitate consistent refusal documentation. Trial Registration NCT03399396 Registered in ClinicalTrials.gov on 1/16/2018.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Masculino , Femenino , Humanos , Niño , Virus del Papiloma Humano , Infecciones por Papillomavirus/prevención & control , Estudios de Factibilidad , Vacunación , Inmunización
5.
Orbit ; 41(3): 354-360, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33297808

RESUMEN

We present a case of orbital giant cell myositis (OGCM), presenting with bilateral subacute progressive ophthalmoplegia and optic nerve dysfunction. An early extraocular muscle biopsy confirmed the diagnosis and guided appropriate management. Comprehensive investigation excluded any underlying systemic disease, including myocarditis. Twenty two months after presentation, the patient remains well on azathioprine with complete resolution of orbital signs.


Asunto(s)
Miositis , Oftalmoplejía , Miositis Orbitaria , Células Gigantes/patología , Humanos , Miositis/diagnóstico , Músculos Oculomotores/diagnóstico por imagen , Músculos Oculomotores/patología , Oftalmoplejía/diagnóstico por imagen , Oftalmoplejía/tratamiento farmacológico , Miositis Orbitaria/diagnóstico por imagen , Miositis Orbitaria/tratamiento farmacológico
6.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32028278

RESUMEN

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético/fisiología , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Proopiomelanocortina , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Fenómenos Electrofisiológicos , Metabolismo Energético/efectos de los fármacos , Femenino , Cobayas , Homeostasis , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33077657

RESUMEN

Inhaled bacteriophage (phage) therapy is a potential alternative to conventional antibiotic therapy to combat multidrug-resistant (MDR) Pseudomonas aeruginosa infections. However, pharmacokinetics (PK) and pharmacodynamics (PD) of phages are fundamentally different from antibiotics and the lack of understanding potentially limits optimal dosing. The aim of this study was to investigate the in vivo PK and PD profiles of antipseudomonal phage PEV31 delivered by pulmonary route in immune-suppressed mice. BALB/c mice were administered phage PEV31 at doses of 107 and 109 PFU by the intratracheal route. Mice (n = 4) were sacrificed at 0, 1, 2, 4, 8, and 24 h posttreatment and various tissues (lungs, kidney, spleen, and liver), bronchoalveolar lavage fluid, and blood were collected for phage quantification. In a separate study combining phage with bacteria, mice (n = 4) were treated with PEV31 (109 PFU) or phosphate-buffered saline (PBS) at 2 h postinoculation with MDR P. aeruginosa Infective PEV31 and bacteria were enumerated from the lungs. In the phage-only study, the PEV31 titer gradually decreased in the lungs over 24 h, with a half-life of approximately 8 h for both doses. In the presence of bacteria, in contrast, the PEV31 titer increased by almost 2-log10 in the lungs at 16 h. Furthermore, bacterial growth was suppressed in the PEV31-treated group, while the PBS-treated group showed exponential growth. Of the 10 colonies tested, four phage-resistant isolates were observed from the lung homogenates sampled at 24 h after phage treatment. These colonies had a different antibiogram to the parent bacteria. This study provides evidence that pulmonary delivery of phage PEV31 in mice can reduce the MDR bacterial burden.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones por Pseudomonas , Animales , Ratones , Ratones Endogámicos BALB C , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa
8.
Toxicol Pathol ; 48(3): 437-445, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31896310

RESUMEN

The handling-induced dark neuron is a histological artifact observed in brain samples handled before fixation with aldehydes. To explore associations between dark neurons and immunohistochemical alterations in mouse brains, we examined protein products encoded by Cav3 (neuronal perikarya/neurites), Rbbp4 (neuronal nuclei), Gfap (astroglia), and Aif1 (microglia) genes in adjacent tissue sections. Here, dark neurons were incidental findings from our prior project, studying the effects of age and high-fat diet on metabolic homeostasis in male C57BL/6N mice. Available were brains from 4 study groups: middle-aged/control diet, middle-aged/high-fat diet, old/control diet, and old/high-fat diet. Young/control diet mice were used as baseline. The hemibrains were immersion-fixed with paraformaldehyde and paraffin-embedded. In the hippocampal formation, we found negative correlations between dark neuron hyperbasophilia and immunoreactivity for CAV3, RBBP4, and glial fibrillary acidic protein (GFAP) using quantitative image analysis. There was no significant difference in dark neuron hyperbasophilia or immunoreactivity for any protein examined among all groups. In contrast, in the hippocampal fimbria, old age seemed to be associated with higher immunoreactivity for GFAP and allograft inflammatory factor-1. Our findings suggest that loss of immunohistochemical reactivity for CAV3, RBBP4, and GFAP in the hippocampal formation is an artifact associated with the occurrence of dark neurons. The unawareness of dark neurons may lead to misinterpretation of immunohistochemical reactivity alterations.


Asunto(s)
Artefactos , Biomarcadores/análisis , Inmunohistoquímica , Neuronas , Manejo de Especímenes/efectos adversos , Animales , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484001

RESUMEN

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

10.
Anal Chem ; 91(20): 12760-12767, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31539468

RESUMEN

Use of powder phage formulations for the treatment of multiple-drug-resistant pulmonary infections is gaining attention. To achieve therapeutic benefits, it is critical for phages to remain stable in the formulation. Assessment of phage stability relies on plaque assay (bioactivity), which requires powder samples to be reconstituted in liquid. The purpose of this study was to develop an innovative approach using photothermal-induced resonance-enhanced atomic force microscopy infrared spectroscopy (AFM-IR) to assess the presence of phages and investigate their protein conformation in the solid state. Staphylococcal phage S83 was spray-dried with lactose and sodium stearate using spray-drying. The phage powder recrystallized at 60% relative humidity (RH), so it was stored and handled below this RH. For the AFM-IR measurements, spray-dried Staphylococcal phage Sa83 powder was embedded in resin, followed by microtome sectioning. AFM-IR spectra collected from different regions within the microtomed sections revealed the presence of phage proteins with amide I and amide II bands at 1640 and 1550 cm-1, respectively. The phages were confirmed to be stable, as the plaque assay showed negligible titer reduction after spray-drying. Our results thus demonstrated the utility of AFM-IR for characterization of nanosized phages present in extremely low quantity in spray-dried particles. These biologically active phages were shown to retain their physical and chemical integrity in the spray-dried particles.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Polvos/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Bacteriófagos/metabolismo , Desecación , Humanos , Lactosa/química , Microscopía de Fuerza Atómica , Infecciones del Sistema Respiratorio/diagnóstico , Ácidos Esteáricos/química , Proteínas Virales/química
11.
Environ Sci Technol ; 53(16): 9407-9417, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31329419

RESUMEN

Surfactants account for minor fractions of total organic carbon in the ocean but can significantly influence the production of primary marine aerosol particles (PMA) at the sea surface via modulation of bubble surface tension. During September and October 2016, model PMA (mPMA) were produced from seawater by bursting bubbles at two biologically productive and two oligotrophic stations in the western North Atlantic Ocean. Total concentrations of surfactants extracted from mPMA and seawater were quantified and characterized via measurements of surface tension isotherms and critical micelle concentrations (CMCs). Surfactant CMCs in biologically productive seawater were lower than those in the oligotrophic seawater suggesting that surfactant mixtures in the two regions were chemically distinct. mPMA surfactants were enriched in all regions relative to those in the associated seawater. Surface tension isotherms indicate that mPMA surfactants were weaker than corresponding seawater surfactants. mPMA from biologically productive seawater contained higher concentrations of surfactants than those produced from oligotrophic seawater, supporting the hypothesis that seawater surfactant properties modulate mPMA surfactant concentrations. Diel variability in concentrations of seawater and mPMA surfactants in some regions is consistent with biological and/or photochemical processing. This work demonstrates direct links between surfactants in mPMA and those in the associated seawater.


Asunto(s)
Agua de Mar , Tensoactivos , Aerosoles , Océano Atlántico , Tensión Superficial
12.
BMC Pulm Med ; 19(1): 42, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767769

RESUMEN

BACKGROUND: Aerosol delivery through a nasal high flow (NHF) system is attractive for clinicians as it allows for simultaneous administration of oxygen and inhalable drugs. However, delivering a fine particle fraction (FPF, particle wt. fraction < 5.0 µm) of drugs into the lungs has been very challenging, with highest value of only 8%. Here, we aim to develop an efficient nose-to-lung delivery system capable of delivering improved quantities (FPF > 16%) of dry powder aerosols to the lungs via an NHF system. METHODS: We evaluated the FPF of spray-dried mannitol with leucine with a next generation impactor connected to a nasopharyngeal outlet of an adult nasal airway replica. In addition, we investigated the influence of different dispersion (20-30 L/min) and inspiratory (20-40 L/min) flow rates, on FPF. RESULTS: We found an FPF of 32% with dispersion flow rate at 25 L/min and inspiratory flow rate at 40 L/min. The lowest FPF (21%) obtained was at the dispersion flow rate at 30 L/min and inspiratory flow rate at 30 L/min. A higher inspiratory flow rate was generally associated with a higher FPF. The nasal cannula accounted for most loss of aerosols. CONCLUSIONS: In conclusion, delivering a third of inhalable powder to the lungs is possible in vitro through an NHF system using a low dispersion airflow and a highly dispersible powder. Our results may lay the foundation for clinical evaluation of powder aerosol delivery to the lungs during NHF therapy in humans.


Asunto(s)
Aerosoles/administración & dosificación , Leucina/administración & dosificación , Manitol/administración & dosificación , Terapia por Inhalación de Oxígeno/métodos , Polvos/administración & dosificación , Administración por Inhalación , Cánula , Humanos , Técnicas In Vitro , Modelos Anatómicos , Nebulizadores y Vaporizadores , Tamaño de la Partícula , Ventilación Pulmonar
13.
Proc Natl Acad Sci U S A ; 113(28): 7733-8, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354511

RESUMEN

With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

14.
Proc Natl Acad Sci U S A ; 113(1): 40-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699476

RESUMEN

Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥ 50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y(-1), ∼ 25% of global emissions from extratropical wetlands, or ∼ 6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Asunto(s)
Frío , Metano/análisis , Tundra , Regiones Árticas , Monitoreo del Ambiente , Modelos Teóricos , Estaciones del Año , Suelo , Humedales
15.
Artículo en Inglés | MEDLINE | ID: mdl-29158280

RESUMEN

Bacteriophage therapy is a promising alternative treatment to antibiotics, as it has been documented to be efficacious against multidrug-resistant bacteria with minimal side effects. Several groups have demonstrated the efficacy of phage suspension in vivo to treat lung infections using intranasal delivery; however, phage dry-powder administration to the lungs has not yet been explored. Powder formulations provide potential advantages over a liquid formulation, including easy storage, transport, and administration. The purpose of this study was to assess the bactericidal activities of phage dry-powder formulations against multidrug-resistant (MDR) strain Pseudomonas aeruginosa FADDI-PA001 in a mouse lung infection model. Phage PEV20 spray dried with lactose and leucine produced an inhalable powder at a concentration of 2 × 107 PFU/mg. P. aeruginosa lung infection was established by intratracheal administration of the bacterial suspension to neutropenic mice. At 2 h after the bacterial challenge, the infected mice were treated with 2 mg of the phage powder using a dry-powder insufflator. At 24 h after the phage treatment, the bacterial load in the lungs was decreased by 5.3 log10 (P < 0.0005) in the phage-treated group compared with that in the nontreated group. Additionally, the phage concentration in the lungs was increased by 1 log10 at 24 h in the treated group. These results demonstrate the feasibility of a pulmonary delivery of phage PEV20 dry-powder formulation for the treatment of lung infection caused by antibiotic-resistant P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Bacteriófagos/química , Polvos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Ácido Valproico/análogos & derivados , Células A549 , Administración por Inhalación , Animales , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhaladores de Polvo Seco/métodos , Células HEK293 , Humanos , Pulmón/microbiología , Ratones , Tamaño de la Partícula , Terapia de Fagos/métodos , Infecciones por Pseudomonas/microbiología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Ácido Valproico/química
16.
Int J Syst Evol Microbiol ; 68(5): 1652-1658, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29570444

RESUMEN

A taxonomic and physiologic characterization was carried out on Thioclava strain ElOx9T, which was isolated from a bacterial consortium enriched on electrodes poised at electron donating potentials. The isolate is Gram-negative, catalase-positive and oxidase-positive; the cells are motile short rods. The bacterium is facultatively anaerobic with the ability to utilize nitrate as an electron acceptor. Autotrophic growth with H2 and S0 (oxidized to sulfate) was observed. The isolate also grows heterotrophically with organic acids and sugars. Growth was observed at salinities from 0 to 10% NaCl and at temperatures from 15 to 41 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs in the genus Thioclava; it had the highest sequence similarity of 98.8 % to Thioclava atlantica 13D2W-2T, followed by Thioclava dalianensis DLFJ1-1T with 98.5 % similarity, Thioclava pacifica TL 2T with 97.7 % similarity, and then Thioclava indica DT23-4T with 96.9 %. All other sequence similarities were below 97 % to characterized strains. The digital DNA-DNA hybridization estimated when compared to T. atlantica 13D2W-2T, T. dalianensis DLFJ1-1T, T. pacifica TL 2T and T. indica DT23-4T were 15.8±2.1, 16.7+2.1, 14.3±1.9 and 18.3±2.1 %. The corresponding average nucleotide identity values between these strains were determined to be 65.1, 67.8, 68.4 and 64.4 %, respectively. The G+C content of the chromosomal DNA is 63.4 mol%. Based on these results, a novel species Thioclava electrotropha sp. nov. is proposed, with the type strain ElOx9T (=DSM 103712T=ATCC TSD-100T).


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Rhodobacteraceae/clasificación , Agua de Mar/microbiología , Procesos Autotróficos , Técnicas de Tipificación Bacteriana , Composición de Base , California , ADN Bacteriano/genética , Electrodos , Ácidos Grasos/química , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Salinidad , Análisis de Secuencia de ADN
18.
Pharm Res ; 34(10): 2084-2096, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28646325

RESUMEN

PURPOSE: To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. METHODS: Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log10(pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. RESULTS: Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log10(pfu/mL). Active phage delivery rate was significantly greater (p < 0.01) for the vibrating mesh nebulizer (3.3x108 ± 0.8x108 pfu/min) than for the jet nebulizer (5.4x104 ± 1.3x104 pfu/min). The soft mist inhaler delivered 4.6x106 ± 2.0x106 pfu per 11.6 ± 1.6 µL ex-actuator dose. CONCLUSIONS: Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.


Asunto(s)
Bacteriófagos , Nebulizadores y Vaporizadores , Tuberculosis/terapia , Administración por Inhalación , Aerosoles/química , Animales , Liberación de Fármacos , Estabilidad de Medicamentos , Diseño de Equipo/métodos , Equipos y Suministros , Humanos , Terapia de Fagos
19.
Proc Natl Acad Sci U S A ; 111(47): 16694-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385648

RESUMEN

We determined methane (CH4) emissions from Alaska using airborne measurements from the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Atmospheric sampling was conducted between May and September 2012 and analyzed using a customized version of the polar weather research and forecast model linked to a Lagrangian particle dispersion model (stochastic time-inverted Lagrangian transport model). We estimated growing season CH4 fluxes of 8 ± 2 mg CH4⋅m(-2)⋅d(-1) averaged over all of Alaska, corresponding to fluxes from wetlands of 56(-13)(+22) mg CH4⋅m(-2)⋅d(-1) if we assumed that wetlands are the only source from the land surface (all uncertainties are 95% confidence intervals from a bootstrapping analysis). Fluxes roughly doubled from May to July, then decreased gradually in August and September. Integrated emissions totaled 2.1 ± 0.5 Tg CH4 for Alaska from May to September 2012, close to the average (2.3; a range of 0.7 to 6 Tg CH4) predicted by various land surface models and inversion analyses for the growing season. Methane emissions from boreal Alaska were larger than from the North Slope; the monthly regional flux estimates showed no evidence of enhanced emissions during early spring or late fall, although these bursts may be more localized in time and space than can be detected by our analysis. These results provide an important baseline to which future studies can be compared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA