Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 18(7): 2556-2573, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34110176

RESUMEN

Cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) were reported to be potential carriers for oral gene delivery in our previous study; however, the effect of the aspect ratio (AR) of these PNTs on gene delivery in vivo could affect penetration or interception in biological environments. The aim of this study was to assess the feasibility of cyclo-(D-Trp-Tyr) PNTs with two ARs as carriers for oral pMBP-bcl-xL-hRluc delivery to the spinal cord to treat spinal cord injury (SCI). We evaluated the biodistribution of oligodendrocyte (OLG)-specific myelin basic protein gene promoter-driven antiapoptotic DNA (pMBP-bcl-xL) to the brain and spinal cord delivered with cyclo-(D-Trp-Tyr) PNTs with large (L) and small (S) PNTs with two ARs. After complex formation, the length, width, and AR of the L-PNTs/DNA were 77.86 ± 3.30, 6.51 ± 0.28, and 13.75 ± 7.29 µm, respectively, and the length and width of the S-PNTs/DNA were 1.17 ± 0.52 and 0.17 ± 0.05 µm, respectively, giving an AR of 7.12 ± 3.17 as detected by scanning electron microscopy. Each of these three parameters exhibited significant differences (p < 0.05) between L-PNTs/DNA and S-PNTs/DNA. However, there were no significant differences (p > 0.05) between the L-PNTs and S-PNTs for either their DNA encapsulation efficiency (29.72 ± 14.19 and 34.31 ± 16.78%, respectively) or loading efficiency (5.15 ± 2.58 and 5.95 ± 2.91%). The results of the in vitro analysis showed that the S-PNT/DNA complexes had a significantly higher DNA release rate and DNA permeation in the duodenum than the L-PNT/DNA complexes. Using Cy5 and TM-rhodamine to individually and chemically conjugate the PNTs with plasmid DNA, we observed, using laser confocal microscopy, that the PNTs and DNA colocalized in complexes. We further confirmed the complexation between DNA and the PNTs using fluorescence resonance energy transfer (FRET). Data from an in vivo imaging system (IVIS) showed that there was no significant difference (p > 0.05) in PNT distribution between L-PNTs/DNA and S-PNTs/DNA within 4 h. However, the S-PNT/DNA group had a significantly higher DNA distribution (p < 0.05) in several organs, including the ilium, heart, lungs, spleen, kidneys, testes, brain, and spinal cord. Finally, we determined the bcl-xL protein expression levels in the brain and spinal cord regions for the L-PNT/DNA and S-PNT/DNA complex formulations. These results suggested that either L-PNTs or S-PNTs may be used as potential carriers for oral gene delivery to treat SCI.


Asunto(s)
Encéfalo/metabolismo , ADN/farmacocinética , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Nanotubos de Péptidos/química , Péptidos Cíclicos/química , Médula Espinal/metabolismo , Proteína bcl-X/metabolismo , Administración Oral , Animales , ADN/administración & dosificación , ADN/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Regiones Promotoras Genéticas , Distribución Tisular , Proteína bcl-X/administración & dosificación , Proteína bcl-X/genética
2.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884829

RESUMEN

Methylprednisolone (MP) is an anti-inflammatory drug approved for the treatment of acute spinal cord injuries (SCIs). However, MP administration for SCIs has become a controversial issue while the molecular effects of MP remain unexplored to date. Therefore, delineating the benefits and side effects of MP and determining what MP cannot cure in SCIs at the molecular level are urgent issues. Here, genomic profiles of the spinal cord in rats with and without injury insults, and those with and without MP treatment, were generated at 0, 2, 4, 6, 8, 12, 24, and 48 h post-injury. A comprehensive analysis was applied to obtain three distinct classes: side effect of MP (SEMP), competence of MP (CPMP), and incapability of MP (ICMP). Functional analysis using these genes suggested that MP exerts its greatest effect at 8~12 h, and the CPMP was reflected in the immune response, while SEMP suggested aspects of metabolism, such as glycolysis, and ICMP was on neurological system processes in acute SCIs. For the first time, we are able to precisely reveal responsive functions of MP in SCIs at the molecular level and provide useful solutions to avoid complications of MP in SCIs before better therapeutic drugs are available.


Asunto(s)
Antiinflamatorios/farmacología , Metilprednisolona/farmacología , Traumatismos de la Médula Espinal/patología , Transcriptoma/efectos de los fármacos , Animales , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Metilprednisolona/uso terapéutico , Ratas , Ratas Long-Evans , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Factores de Tiempo
3.
Cell Commun Signal ; 16(1): 83, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458799

RESUMEN

BACKGROUND: P2X7 is ubiquitously expressed in myeloid cells and regulates the pathophysiology of inflammatory diseases. Since mitochondrial function in microglia is highly associated with microglial functions in controlling neuronal plasticity and brain homeostasis, we interested to explore the roles of P2X7 in mitochondrial and lysosomal functions as well as mitophagy in microglia. METHODS: P2X7-/- bone marrow-derived macrophages (BMDM), primary microglia and BV-2 immortalized microglial cells were used to detect the particular protein expression by immunoblotting. Mitochondrial reactive oxygen species (mitoROS), intracellular calcium, mitochondrial mass and lysosomal integrity were examined by flow cytometry. Mitochondrial oxygen consumption rate (OCR) was recorded using Seahorse XF flux analyzer. Confocal microscopic images were performed to indicate the mitochondrial dynamics and mitophagy after P2X7 activation. RESULTS: In primary microglia, BV-2 microglial cells and BMDM, P2X7 agonist BzATP triggered AMPK activation and LC3II accumulation through reactive oxygen species (ROS) and CaMKKII pathways, and these effects were abolished by P2X7 antagonist A438079 and P2X7 deficiency. Moreover, we detected the dramatic decreases of mitochondrial OCR and mass following P2X7 activation. AMPK inhibition by compound C or AMPK silencing reversed the P2X7 actions in reduction of mitochondrial mass, induction of mitochondrial fission and mitophagy, but not in uncoupling of mitochondrial respiration. Interestingly, we found that P2X7 activation induced nuclear translocation of TFEB via an AMPK-dependent pathway and led to lysosomal biogenesis. Mimicking the actions of BzATP, nigericin also induced ROS-dependent AMPK activation, mitophagy, mitochondrial fission and respiratory inhibition. Longer exposure of BzATP induced cell death, and this effect was accompanied by the lysosomal instability and was inhibited by autophagy and cathepsin B inhibitors. CONCLUSION: Altogether ROS- and CaMKK-dependent AMPK activation is involved in P2X7-mediated mitophagy, mitochondrial dynamics and lysosomal biogenesis in microglial cells, which is followed by cytotoxicity partially resulting from mitophagy and cathepsin B activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lisosomas/metabolismo , Microglía/citología , Mitocondrias/metabolismo , Mitofagia , Receptores Purinérgicos P2X7/metabolismo , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Respiración de la Célula , Activación Enzimática , Ratones , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo
4.
J Biomed Sci ; 23: 3, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26772539

RESUMEN

BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is a major regulator of the production and survival of neutrophils. Regulation of G-CSF expression is complex and occurs at both transcription and post-transcription levels. Two distinct types of cis-acting elements in the 3' untranslated region (3'UTR) of G-CSF mRNA have been identified as destabilizing elements; these consist of adenylate uridylate-rich elements (AUREs) and a stem-loop destabilizing element (SLDE). Regulation of the stability of mRNA by p38 mitogen-activated protein kinase (MAPK) has been indicated to be linked to AUREs in the 3'UTR. However, whether p38 MAPK is involved in the regulation of the stability of G-CSF mRNA has not been elucidated. This study investigated the effect of SB203580, an inhibitor of p38 MAPK, on the lipopolysaccharide-induced G-CSF expression in macrophages at the post-transcription level. RESULTS: Our study showed surprising results that SB203580 augmented the lipopolysaccharide-induced increase in the G-CSF mRNA levels in RAW264.7 mouse macrophages, mouse bone marrow-derived macrophages and in THP-1 human macrophages. This effect was also seen in p38α MAPK knockdown RAW264.7 cells, showing that it was not due to inhibition of p38 MAPK activity. In the presence of actinomycin D, the decay of G-CSF mRNA was slower in SB203580-treated cells than in control cells, showing that SB203580 increased the stability of G-CSF mRNA. Reporter genes containing luciferase with or without the 3'UTR of G-CSF were constructed and transfected into RAW264.7 cells and the results showed that the presence of the 3'UTR reduced the luciferase mRNA levels and luciferase activity. Furthermore, SB203580 increased the luciferase mRNA levels and activity in RAW264.7 cells transfected with the luciferase reporter containing the 3'UTR, but not in cells transfected with the luciferase reporter without the 3'UTR. Mutations of the highly conserved SLDE in the 3'UTR abolished these effects, showing that the SLDE was essential for the SB203580-induced increase in the stability of mRNA. CONCLUSIONS: SB203580 increases G-CSF expression in macrophages by increasing the stability of G-CSF mRNA via its 3'UTR, and the effect was not due to its inhibition of p38 MAPK activity. The results of this study also highlight a potential target for boosting endogenous production of G-CSF during neutropenia.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Imidazoles/farmacología , Piridinas/farmacología , Pliegue del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Factor Estimulante de Colonias de Granulocitos/genética , Humanos , Ratones , Pliegue del ARN/genética , Estabilidad del ARN/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
J Biomed Sci ; 23: 2, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26767504

RESUMEN

BACKGROUND: 3-(5'-Hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) is a potential anticancer drug that may activate soluble guanylyl cyclase (sGC) and increase the level of cyclic guanosine monophosphate (cGMP). The aim of this study was to explore the effects of YC-1 on lipid droplet accumulation and foam cell formation in macrophages. RESULTS: Human-oxidized low density lipoprotein (ox-LDL) was used to induce accumulation of lipid droplets in a murine macrophage cell line, RAW 264.7. Oil red O staining showed that treatment with 20 µM YC-1 for 24 h increased the area of intracellular lipid droplets in macrophages. The results of high content screening (HCS) with the AdipoRed™ assay further revealed that YC-1 enhanced ox-LDL-induced foam cell formation. This was evidenced by an increase in the total area of lipid droplets and the mean fluorescence intensity per cell. Inhibition of cGMP-dependent protein kinase (PKG) using KT5823 significantly reduced YC-1-enhanced lipid droplet formation in ox-LDL-induced macrophage foam cells. CONCLUSION: YC-1 induces lipid droplet formation in macrophages, possibly through the sGC/cGMP/PKG signaling pathway. This chemical should be tested with caution in future clinical trials.


Asunto(s)
GMP Cíclico/metabolismo , Indazoles/farmacología , Gotas Lipídicas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Animales , Línea Celular , Ratones
6.
J Transl Med ; 13: 367, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26597084

RESUMEN

BACKGROUND: This study aimed to investigate whether the DNA methylation of human ovarian carcinoma stromal progenitor cells (OCSPCs) could promote the tumorigenesis of ovarian carcinoma. METHODS: OCSPCs were first isolated from fresh tumor tissues and ascites of ovarian cancer patients. In vivo and in vitro experiments on the effect of the OCSPCs on tumorigenesis and the effects of DNA demethylation on the OCSPCs were then performed. RESULTS: The OCSPCs possessed self-renewal and multipotent differentiation capacity with elevated expressions of OCT4, NANOG, BMP2, BMP4, Rex-1, AC133 and TGF-ß. The OCSPCs, when combined with tumor cells in vivo could promote tumor growth. The methylation profiles of tumor suppressor genes (TSGs) were significantly higher in the OCSPCs than in ovarian cancer cells (p < 0.001). 5-aza-2-dC could alter the methylation levels of TSGs in OCSPCs and also inhibit the tumor promoting capabilities of the OCSPCs by decreasing the proliferation of tumors cells. The expression levels of TSGs were re-expressed by 5-aza-2-dC to inhibit the self-renewal and growth of OCSPCs. CONCLUSIONS: OCSPCs with decreased TSG expressions in the ovarian tumor microenvironment were able to promote tumorigenesis which could be reversed by DNA demethylation. DNA demethylation reversing the expression of TSGs in OCSPCs may represent a potential therapeutic target for ovarian cancer.


Asunto(s)
Carcinogénesis , Metilación de ADN , Neoplasias Ováricas/genética , Células del Estroma/patología , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Linaje de la Célula , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología
7.
J Med Virol ; 87(8): 1404-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25940199

RESUMEN

We compared multiplex E6 messenger ribonucleic acid (mRNA) tests using real-time quantitative reverse transcriptase polymerase chain reactions (PCR) with human papillomavirus (HPV) DNA subtypes using a MY11/GP6+ PCR-based reverse-blot assay to identify cervical intraepithelial neoplasias of grade 2 or worse (CIN2+). In total, 684 women were studied, of whom 377 (55%) were diagnosed with CIN2+ histologically. The specificity of HPV mRNA to predict histological CIN2+ was higher than that of HPV DNA (81.3% vs. 44.2%). The odds ratios (ORs) to predict histological CIN2+ in women with positive for type 16, 18, 31, and 45 E6 mRNA or by HPV DNA detection were 7.1 (95% confidence interval [CI] 3.9-13.1) and 2.5 (95%CI 1.9-3.5), respectively, compared to those with negative for E6 mRNA or HPV DNA. The OR to predict histological CIN2+ in women with a cytological grade

Asunto(s)
ADN Viral/análisis , Tamizaje Masivo/métodos , Técnicas de Diagnóstico Molecular/métodos , Proteínas Oncogénicas Virales/análisis , Infecciones por Papillomavirus/complicaciones , ARN Mensajero/análisis , Displasia del Cuello del Útero/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , ADN Viral/genética , Femenino , Humanos , Persona de Mediana Edad , Proteínas Oncogénicas Virales/genética , Valor Predictivo de las Pruebas , ARN Mensajero/genética , Medición de Riesgo , Sensibilidad y Especificidad , Adulto Joven , Displasia del Cuello del Útero/virología
8.
BMC Cancer ; 15: 789, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26497956

RESUMEN

BACKGROUND: Methylation of HIN-1 is associated with poor outcomes in patients with ovarian clear cell carcinoma (OCCC), which is regarded to be an aggressive, chemo-resistant histological subtype. This study aimed to evaluate whether 5-aza-2-deoxycytidine (5-aza-2-dC) can reverse methylation of the HIN-1 gene to restore chemo-sensitivity of OCCC and the possible mechanism. METHODS: In vitro flow cytometric analysis and evaluation of caspase-3/7 activity of paclitaxel-sensitive and resistant OCCC cell lines were performed. Methylation status and expression changes of HIN-1 in the OCCC cell lines treated with 5-aza-2-dC were evaluated, and immunohistochemical staining of HIN-1 in OCCC tissues was performed. In vivo tumor growth with or without 5-aza-2-dC treatment was analyzed, and Western blotting of AKT-mTOR signaling-related molecules was performed. RESULTS: G2-M phase arrest was absent in paclitaxel-resistant OCCC cells after treatment with the cytotoxic drug. The caspase activities of the chemo-resistant OCCC cells were lower than those of the chemo-sensitive OCCC cells when treated with paclitaxel. Methylation of HIN-1 was noted in paclitaxel-resistant OCCC cell lines and cancerous tissues. 5-aza-2-dC reversed the methylation of HIN-1, re-activated the expression of HIN-1, and then suppressed the in vivo tumor growth of paclitaxel-resistant OCCC cells. Immunoblotting revealed that phospho-AKT473 and phospho-mTOR were significantly increased in HIN-1-methylated paclitaxel-resistant OCCC cell lines. However, the expressions of phospho-AKT at Ser473 and Thr308 and phospho-mTOR decreased in the OCCC cells with a high expression of HIN-1. CONCLUSIONS: Demethylating agents can restore the HIN-1 expression in paclitaxel-resistant OCCC cells through the HIN-1-AKT-mTOR signaling pathway to inhibit tumor growth.


Asunto(s)
Adenocarcinoma de Células Claras/metabolismo , Citocinas/biosíntesis , Neoplasias Ováricas/metabolismo , Paclitaxel/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Serina-Treonina Quinasas TOR/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Adenocarcinoma de Células Claras/tratamiento farmacológico , Adulto , Anciano , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Metilación de ADN/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
J Biomed Sci ; 21: 11, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24490960

RESUMEN

BACKGROUND: Oxidized LDL (oxLDL) is involved in the development of atherosclerotic heart disease through a mechanism that is not fully understood. In this study, we examined the role of malondialdehyde (MDA), an important oxidative stress epitope of oxLDL, in mediating coronary endothelial cytotoxicity. RESULTS: Human coronary artery endothelial cells (HCAECs) were treated with oxLDL in the presence or absence of antibody against MDA (anti-MDA) or apoB100 (anti-apoB100). In HCAECs treated with oxLDL (100 µg/ml) alone, DNA synthesis, cell viability, and expression of prosurvival fibroblast growth factor 2 (FGF2) were significantly reduced (P < 0.01 vs phosphate buffered saline-treated cells). These inhibitory effects of oxLDL were significantly attenuated in HCAECs cotreated with anti-MDA (0.15 µg/ml; P < 0.05 vs oxLDL-treated cells), but not in those cotreated with anti-apoB100. When we tested the effects of a panel of signal transduction modifiers on the signal transduction pathways of MDA in oxLDL-treated HCAECs, we found that MDA-induced cytotoxicity was mediated partly through the Akt pathway. Using a reporter gene assay, we identified an oxLDL-response element in the FGF2 promoter that was responsible for the transcriptional repression of FGF2 by oxLDL. The results of bisulfite genomic DNA sequencing showed that in HCAECs treated with oxLDL, the GC-rich promoter of FGF2 was heavily methylated at cytosine residues, whereas cotreatment with anti-MDA markedly reduced oxLDL-induced FGF2 promoter methylation. CONCLUSION: OxLDL disrupts the growth and survival of HCAECs through an MDA-dependent pathway involving methylation of the FGF2 promoter and repression of FGF2 transcription. This novel epigenetic mechanism of oxLDL may underlie its atherogenicity in patients with atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Lipoproteínas LDL/metabolismo , Malondialdehído/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Anticuerpos/administración & dosificación , Aterosclerosis/etiología , Aterosclerosis/patología , Supervivencia Celular/efectos de los fármacos , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , ADN/biosíntesis , Metilación de ADN/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Lipoproteínas LDL/toxicidad , Malondialdehído/antagonistas & inhibidores , Malondialdehído/inmunología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética
10.
Mol Cancer ; 11: 53, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22871047

RESUMEN

BACKGROUND: This study is to analyze promoter methylation of various tumor suppressor genes in different types of ovarian carcinoma and to identify potential therapeutic targets of ovarian clear cell adenocarcinoma (OCCA). MATERIALS AND METHODS: The promoter methylation statuses of 40 genes in primary ovarian carcinomas including 47 clear- and 63 non-clear-cell type tissues, 6 OCCA cell lines, 29 benign ovarian endometriotic cysts, and 31 normal controls were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The MS-MLPA results were correlated with clinicopathological features and outcomes of 47 OCCA patients. Functions of the target genes were further explored by Western Blot Analysis, apoptosis assay, and caspase-3/7 activity analysis. RESULTS: Frequencies of methylated RASSF1A, CDH13, CACNA1A, HIN-1, and sFRP5 genes in OCCA tissues were significantly higher than those in non-OCCA cancerous tissues and benign endometriotic cysts. The expected OS for patients with methylated promoters of HIN-1 was significantly worse than those for patients without methylated HIN-1 (30% vs. 62%, p = 0.002). The HIN-1 gene was over-expressed in ES2 cells, a significant reduction in cell growth and induction of apoptosis, and increasing paclitaxel sensitivity by reducing phosphorylation of Akt were observed. CONCLUSIONS: Methylation of HIN-1 promoter is a novel epigenetic biomarker associated with poor outcomes in OCCA patients. Ectopic expression of the HIN-1 gene increased paclitaxel sensitivity which is partly through Akt pathway.


Asunto(s)
Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/mortalidad , Citocinas/genética , Metilación de ADN , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/genética , Adenocarcinoma de Células Claras/patología , Adulto , Anciano , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Ováricas/patología , Paclitaxel/farmacología , Pronóstico , Reproducibilidad de los Resultados
11.
J Biomed Sci ; 19: 23, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22330345

RESUMEN

BACKGROUND: At least one-third of epithelial ovarian cancers are associated with the development of ascites containing heterogeneous cell populations, including tumor cells, inflammatory cells, and stromal elements. The components of ascites and their effects on the tumor cell microenvironment remain poorly understood. This study aimed to isolate and characterize stromal progenitor cells from the ascites of patients with epithelial ovarian adenocarcinoma (EOA). METHODS: Seventeen ascitic fluid samples and 7 fresh tissue samples were collected from 16 patients with EOA. The ascites samples were then cultured in vitro in varying conditions. Flow cytometry and immunocytochemistry were used to isolate and characterize 2 cell populations with different morphologies (epithelial type and mesenchymal type) deriving from the ascites samples. The in vitro cell culture model was established using conditional culture medium. RESULTS: The doubling times of the epithelial type and mesenchymal type cells were 36 h and 48 h, respectively, indicating faster growth of the epithelial type cells compared to the mesenchymal type cells. Cultured in vitro, these ascitic cells displayed the potential for self-renewal and long-term proliferation, and expressed the typical cancer stem/progenitor cell markers CD44(high), CD24(low), and AC133(+). These cells also demonstrated high BMP-2, BMP4, TGF-ß, Rex-1, and AC133 early gene expression, and expressed EGFR, integrin α2ß1, CD146, and Flt-4, which are highly associated with tumorigenesis and metastasis. The epithelial type cells demonstrated higher cytokeratin 18 and E-cadherin expression than the mesenchymal type cells. The mesenchymal type cells, in contrast, demonstrated higher AC133, CD73, CD105, CD117, EGFR, integrin α2ß1, and CD146 surface marker expression than the epithelial type cells. CONCLUSION: The established culture system provides an in vitro model for the selection of drugs that target cancer-associated stromal progenitor cells, and for the development of ovarian cancer treatments.


Asunto(s)
Adenocarcinoma/patología , Células Madre Adultas/patología , Ascitis/patología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Adenocarcinoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Ascitis/metabolismo , Líquido Ascítico/metabolismo , Líquido Ascítico/patología , Carcinoma Epitelial de Ovario , Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología , Células Tumorales Cultivadas
12.
Mol Pharm ; 9(1): 111-20, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22142416

RESUMEN

This study attempts to investigate the transdermal permeability, the bioavailability and gene expression of plasmid formulated with nonionic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles (PM). Dynamic light scattering (DLS) and atomic force microscopy (AFM) were used to analyze the PM formulated pCMV-Lac Z (P/PM) containing the gene for ß-galactosidase (ß-Gal) driven by cytomegalovirus early promoter. Franz diffusion cell was used for in vitro transdermal permeability analysis. Real-time PCR was used to quantify the permeated plasmid in vitro and in vivo. ß-Gal activity assay was performed to evaluate transgene expression in vivo. The size of P/PM was ~50 nm with round shape. PM significantly enhanced the in vitro transdermal permeability of plasmid in a direction- and temperature-dependent manner. Following transdermal application of P/PM, higher area under the curve (AUC(P/PM): 98.34 h·ng/mL) and longer half-life of plasmid were detected compared with that of plasmid alone (AUC(P): 10.12 h·ng/mL). Additionally, the ß-Gal activity was significantly increased in skin, stomach, brain and spinal cord at both 48 and 72 h after P/PM application and in testis and spleen at 72 h postapplication. In conclusion, PM formulation enhanced the permeation of plasmid through skin into blood circulation, increasing its absorption and the transgene expression in various tissues.


Asunto(s)
Expresión Génica , Técnicas de Transferencia de Gen , Nanoestructuras/química , Plásmidos/administración & dosificación , Polietilenglicoles/química , Glicoles de Propileno/química , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Animales , Disponibilidad Biológica , Fenómenos Químicos , Semivida , Masculino , Ratones , Ratones Desnudos , Micelas , Plásmidos/química , Plásmidos/metabolismo , Plásmidos/farmacocinética , Proteínas Recombinantes/metabolismo , Piel/citología , Organismos Libres de Patógenos Específicos , Distribución Tisular , Transgenes
13.
Mol Pharm ; 9(5): 1231-49, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22480317

RESUMEN

The feasibility of cyclo-(D-Trp-Tyr) peptide nanotubes (PNTs) as oral gene delivery carriers was investigated in nude mice with eight 40 µg doses of pCMV-lacZ in 2 days at 3 h intervals. The association between DNA and PNTs, the DNase I stability of PNTs-associated DNA, and in vitro permeability of DNA were estimated. The results showed that the cyclo-(D-Trp-Tyr) PNTs self-associated at concentrations above 0.01 mg/mL. Plasmid DNA associated with PNTs with a binding constant of 3.2 × 10(8) M(-1) calculated by a fluorescence quenching assay. PNTs were able to protect DNA from DNase I, acid, and bile digestion for 50 min, 60 min, and 180 min, respectively. The in vitro duodenal apparent permeability coefficient of pCMV-lacZ calculated from a steady state flux was increased from 49.2 ± 21.6 × 10(-10) cm/s of naked DNA to 395.6 ± 142.2 × 10(-10) cm/s of pCMV-lacZ/PNT formulation. The permeation of pCMV-lacZ formulated with PNTs was found in an energy-dependent process. Furthermore, ß-galatosidase (ß-Gal) activity in tissues was quantitatively assessed using chlorophenol red-ß-D-galactopyranoside (CPRG) and was significantly increased by 41% in the kidneys at 48 h and by 49, 63, and 46% in the stomach, duodenum, and liver, respectively, at 72 h after the first dose of oral delivery of pCMV-lacZ/PNT formulation. The organs with ß-Gal activity were confirmed for the presence of pCMV-lacZ DNA with Southern blotting analysis and intracellular tracing the TM-rhodamine-labeled DNA and the presence of mRNA by reverse transcription-real time quantitative PCR (RT-qPCR). Another plasmid (pCMV-hRluc) encoding Renilla reniformis luciferase was used to confirm the results. An increased hRluc mRNA and luciferase in stomach, duodenum, liver, and kidney were detected by RT-qPCR, ex vivo bioluminescence imaging, luciferase activity quantification, and immunostaining, respectively.


Asunto(s)
Nanotubos de Péptidos/química , Animales , Southern Blotting , Técnicas de Transferencia de Gen , Masculino , Ratones , Ratones Desnudos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Nanotubos de Péptidos/ultraestructura , Plásmidos/química
14.
BMC Complement Med Ther ; 22(1): 81, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313886

RESUMEN

BACKGROUND: Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. METHODS: A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine's scale in a non-blinded manner. RESULTS: Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4-7 seizures, and shortened the latency to stage 6 seizures. CONCLUSIONS: Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.


Asunto(s)
Pentilenotetrazol , Ácido Valproico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Humanos , Pentilenotetrazol/uso terapéutico , Pentilenotetrazol/toxicidad , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Ácido Valproico/efectos adversos
15.
Neurophotonics ; 9(1): 015006, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35345494

RESUMEN

Significance: Transcranial photobiomodulation (tPBM) at 808 nm attenuates pentylenetetrazole (PTZ)-induced seizures and convulsive status epilepticus (CSE) in peripubertal rats by protecting neurons from injury and parvalbumin-positive interneurons from apoptosis, and preserving the integrity of perisomatic inhibitory networks. However, the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in epileptic rat brains are unknown. Thus, further study to unveil these aspects is needed for understanding the phenomena of tPBM on pediatric CSE prevention. Aim: To evaluate the effects of tPBM on neuroinflammation, astrogliosis, and microgliosis in peripubertal rat hippocampus with PTZ-induced seizures and SE. Approach: An 808-nm diode laser was applied transcranially to peripubertal rats prior to PTZ injection. Immunofluorescence staining of neuron-specific enolase (NSE) was used as a marker of neuroinflammation, glial fibrillary acid protein (GFAP) for astrogliosis, ionized calcium-binding adapter molecule 1 (Iba-1) for microgliosis, and mitochondrial cytochrome c oxidase subunit 1 (MT-CO1) for confirming the involvement of cytochrome c oxidase (CCO). Results: tPBM significantly reduced NSE immunoreactivity in CA3 in PTZ-treated rats, GFAP immunoreactivity in CA1, and Iba-1 immunoreactivity in CA3. Enhancement of hippocampal MT-CO1 reflected that tPBM acted in CCO-dependent manner. Conclusions: tPBM (808) attenuated PTZ-induced seizures and SE by suppressing neuroinflammation, astrogliosis, and microgliosis in peripubertal rats.

16.
Front Oncol ; 12: 1001126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330492

RESUMEN

Oral cancer, constituted up to 90% by squamous cell carcinomas, is a significant health burden globally. Grape seed proanthocyanidins (PA) have been suggested as a potential chemopreventive agent for oral cancer. However, their efficacy can be restricted due to the low bioavailability and bioaccessibility. Inspired by sandcastle worm adhesive, we adapted the concept of complex coacervation to generate a new type of drug delivery platform. Complex coacervates are a dense liquid phase formed by the associative separation of a mixture of oppositely charged polyelectrolytes, can serve as a drug delivery platform to protect labile cargo. In this study, we developed a complex coacervates-based delivery of PA. The release kinetics was measured, and anticancer effects were determined in two human tongue squamous cell carcinoma cell lines. The results showed that complex coacervate successfully formed and able to encapsulate PA. Additionally, PA were steadily released from the system in a pH-dependent manner. The drug delivery system could significantly inhibit the cell proliferation, migration, and invasion of cancer cells. Moreover, it could markedly reduce the expression of certain matrix metalloproteinases (MMP-2, 9, and 13) crucial to metastatic processes. We also found that suppression of protein kinase B (Akt) pathway might be the underlying mechanism for these anticancer activities. Taken together, complex coacervates-based delivery of PA can act as an effective anticancer approach for oral cancer therapy.

17.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36552559

RESUMEN

Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.

18.
J Nat Prod ; 74(6): 1379-85, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21598928

RESUMEN

From the screening of 21 microbial strains, Absidia pseudocylindrospora ATCC 24169 and Aspergillus niger BCRC 32720 were found to reproducibly transform isosteviol lactam (4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam) (3) into various compounds. Preparative-scale transformation of 3 with Abs. pseudocylindrospora yielded two new hydroxylated compounds (4 and 5), with conservation of the lactam ring. Preparative-scale transformation of 3 with Asp. niger afforded seven new compounds, 6 and 9-14, together with the known compounds 7 and 8. A single-crystal X-ray diffraction experiment confirmed the structure of 14. The suppressive effects of compounds 1-14 on the lipopolysaccharide-induced expression of the inducible nitric oxide synthase gene in RAW 264.7 macrophages were examined by a reverse-transcription real-time PCR analysis. With the exception of 7, all other compounds significantly reduced levels of iNOS mRNA relative to control cells, which were induced by LPS alone. Compounds 2, 3, and 5 were similar in activity to dexamethasone, while 9 was more potent.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Lactamas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Absidia/metabolismo , Aspergillus niger/metabolismo , Cristalografía por Rayos X , Diterpenos de Tipo Kaurano/química , Conformación Molecular , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/genética , Resonancia Magnética Nuclear Biomolecular , ARN Mensajero/análisis
19.
J Nutr Biochem ; 97: 108767, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34052311

RESUMEN

Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1ß) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1ß in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1ß production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1ß, and LDL(-) slightly increased IL-1ß; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1ß in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1ß and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1ß or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1ß reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1ß was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1ß in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1ß production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.


Asunto(s)
Interleucina-1beta/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Ácido Palmítico/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Receptores Depuradores de Clase E/metabolismo , Animales , Línea Celular Tumoral , Humanos , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/inmunología , Masculino , Ácido Palmítico/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Conejos , Infarto del Miocardio con Elevación del ST/metabolismo , Receptores Depuradores de Clase E/genética , Transducción de Señal , Células THP-1
20.
Phytochemistry ; 187: 112776, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33933828

RESUMEN

Transformation of 15-ene steviol (ent-13-hydroxy-kaur-15-en-19-oic acid) by growth cultures of Aspergillus niger BCRC 32720, Cunninghamella bainieri ATCC 9244, and Mortierella isabellina ATCC 38063 was conducted to generate various derivatives for the development of bioactive compounds. Four previously undescribed compounds along with six known compounds were obtained. The newly identified isolates were characterized using 1D and 2D NMR, IR, and HRESIMS, and three compounds were further confirmed by X-ray crystallographic analyses. Subsequently, the effects of 15-ene steviol and its derivatives on lipopolysaccharide (LPS)-induced cytokine production by THP-1 cells were examined, with dexamethasone used as a positive control. Results indicated that most of the tested compounds showed lower inhibitory effects than those detected in the dexamethasone-treated group, except that 15-ene steviol showed better effects than dexamethasone on the reduction of LPS-induced monocyte chemoattractant protein (MCP)-1, -2, and -3 release. Three specialized products similarly showed better effects than dexamethasone on the inhibition of LPS-induced secretion of regulated on activation, normal T cell expressed and secreted (RANTES). Moreover, none of the tested compounds showed any cytotoxicity or triggered cell apoptosis, and none affected the protein integrity of toll-like receptor 4 (TLR4) or MyD88, suggesting that these compounds may exert the anti-inflammatory activity downstream of membrane-associated TLR4 and MyD88 molecules.


Asunto(s)
Cunninghamella , Aspergillus niger , Diterpenos de Tipo Kaurano , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA