RESUMEN
Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la PlantaRESUMEN
The wastewater produced during coffee cherry pulping is known for containing harmful pollutants, particularly organic compounds containing carbon, which pose significant risks to the environment and human health. This research aimed to evaluate the effectiveness of Tamarindus indica L. seed polysaccharides in treating coffee effluent. Varying doses (ranging from 0.05 to 0.30 g) of the isolated polysaccharides were added to samples of the effluent to determine their ability to remove contaminants, especially those of organic carbon origin. Notably, a dosage of 0.10 g demonstrated optimal efficacy, resulting in a 55% decrease in total dissolved solids and an 80% decrease in chemical oxygen demand. Additionally, Fourier-transform infrared and zeta potential analysis of both the polysaccharides and the treated effluent samples revealed the presence of functional groups potentially pivotal for the pollutant removal activity of the isolated polysaccharides. This provides insights into the coagulation mechanism of Tamarindus indica L. seed polysaccharides in eliminating organic carbon-based pollutants. These findings highlight the potential of Tamarindus polysaccharides as a sustainable alternative to chemical agents for removing pollutants, thus promoting environmental sustainability and human well-being.
Asunto(s)
Polisacáridos , Semillas , Tamarindus , Aguas Residuales , Tamarindus/química , Polisacáridos/química , Semillas/química , Aguas Residuales/química , Carbono/química , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis , Café/química , Eliminación de Residuos Líquidos/métodosRESUMEN
Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.
Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Oligoquetos , Reproducción , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Metales Pesados/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Reproducción/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Ensayo Cometa , Espectroscopía Infrarroja por Transformada de Fourier , Daño del ADN , Suelo/químicaRESUMEN
Significant efforts have been dedicated to creating recyclable and efficient methods for treating waste dyes, including rhodamine B (RhB). Nevertheless, challenges such as complex operational techniques, high costs, energy consumption, and inefficacy in dye removal persist. Here, the synthesis and application of TiO2/Fe3O4/SiO2 for photocatalytic degradation of RhB dye pollutants have been explored. This research was initiated with magnetite (Fe3O4) synthesis using the coprecipitation method, followed by silica (SiO2) extraction from rice husk waste using the sol-gel process, and a hydrothermal method for synthesizing titanium dioxide (TiO2) and TiO2/Fe3O4/SiO2 nanocomposite. The crystalline structure of TiO2/Fe3O4/SiO2 was obtained with Fe3O4 as the core, while TiO2 and SiO2 as the shell. The particle size analysis showed the nanosize of TiO2/Fe3O4/SiO2 (1.04 ± 0.46 nm). TiO2/Fe3O4/SiO2 nanocomposite boasts a high surface area of 48.025 m2/g, 2.2 times higher than unmodified TiO2. This nanocomposite also displayed paramagnetic properties with a saturation magnetization of 9.117 emu/g, facilitating easy separation in photocatalytic applications. The photocatalytic activity of TiO2/Fe3O4/SiO2 exhibited effectively degraded RhB, achieving a degradation rate of 53.58% and an excellent rate constant of 0.7303 min-1. The RhB photodegradation in this study requires a moderate irradiation time (60 min), uses only a tiny amount of photocatalyst (100 mg), and does not need additional chemicals. Moreover, this study has another advantage of utilizing rice husk as a silica source, offering an eco-friendly and sustainable approach.
Asunto(s)
Nanocompuestos , Rodaminas , Dióxido de Silicio , Titanio , Contaminantes Químicos del Agua , Titanio/química , Rodaminas/química , Dióxido de Silicio/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Catálisis , Fotólisis , Óxido Ferrosoférrico/químicaRESUMEN
The current study aims to investigate the influence of seasonal changes on the pollution loads of the sediment of a coastal area in terms of its physicochemical features. The research will focus on analyzing the nutrients, organic carbon and particle size of the sediment samples collected from 12 different sampling stations in 3 different seasons along the coastal area. Additionally, the study discusses about the impact of anthropogenic activities such as agriculture and urbanization and natural activities such as monsoon on the sediment quality of the coastal area. The nutrient changes in the sediment were found to be: pH (7.96-9.45), EC (2.89-5.23 dS/m), nitrogen (23.98-57.23 mg/kg), phosphorus (7.75-11.36 mg/kg), potassium (217-398 mg/kg), overall organic carbon (0.35-0.99%), and sediment proportions (8.91-9.3%). Several statistical methods were used to investigate changes in sediment quality. According to the three-way ANOVA test, the mean value of the sediments differs significantly with each season. It correlates significantly with principal factor analysis and cluster analysis across seasons, implying contamination from both natural and man-made sources. This study will contribute to developing effective management strategies for the protection and restoration of degraded coastal ecosystem.
Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Humanos , Sedimentos Geológicos/análisis , Estaciones del Año , Ecosistema , Monitoreo del Ambiente/métodos , Bahías , Carbono/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.
Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Biodegradación Ambiental , Ecosistema , Agua , Contaminantes Ambientales/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/análisisRESUMEN
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20ß-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Asunto(s)
Contaminantes Ambientales , Progestinas , Animales , Masculino , Progestinas/farmacología , Aguas Residuales/toxicidad , Ecosistema , Motilidad Espermática , Peces , Reproducción , Receptores de Progesterona , Esteroides/farmacologíaRESUMEN
In recent years, enormous amounts of spent mushroom substrate (SMS) have been generated because of the rapid development of mushroom production. Since the conventional disposal methods of these residues can cause serious environmental problems, alternative waste management techniques are required to ensure sustainable agriculture. However, SMS might be not suitable for vermicomposting when used alone. Therefore, the primary purpose of this study was to investigate the effect of Azolla microphylla (Azolla) biomass, eggshells, fruit peels, and cassava pulp on the biodegradation process of SMS. The results showed the treatments supplemented with cassava pulp and fruit peel waste improved the growth of earthworms, while the carbon-to-nitrogen ratio of these vermicomposts decreased significantly (p < 0.05) due to the improved total nitrogen contents (7.64 g kg-1 and 6.71 g kg-1). Concerning the degradation process and the vermicompost quality, the addition of these agro-residues facilitated the enzyme activities (cellulase, urease, and alkaline phosphatase) and increased the total macronutrient (P, K, Mg, and Ca) and phytohormone (fruit peel waste: AA, GA3, and cytokinin; cassava pulp: cytokinin) contents of the final products compared to the control treatment. On the other hand, Azolla had no additional effect on the fecundity and growth of Eudrilus eugenia. Meanwhile, the treatment supplemented with eggshells was high in Mg (7.15 g kg-1) and Ca (305.6 g kg-1). Overall, the combined decomposition of SMS-based bedding material with Azolla, eggshells, fruit peel waste, and cassava pulp resulted in mature organic fertilizers with improved chemical properties.
Asunto(s)
Agaricales , Oligoquetos , Animales , Citocininas , Estiércol , Nitrógeno , Nutrientes , Reguladores del Crecimiento de las Plantas , SueloRESUMEN
Nanoparticles are inevitable byproducts of modern industry. However, the environmental impacts arising from industrial applications of nanoparticles are largely under-reported. This study evaluated the ecotoxicological effects of aluminum oxide nanoparticles (Al2O3NP) and its influence on sulfacetamide (SA) biodegradation by a freshwater microalga, Scenedesmus obliquus. Although Al2O3NP showed limited toxicity effect on S. obliquus, we observed the toxicity attenuation aspect of Al2O3NP in a mixture of sulfacetamide on microalgae. The addition of 100 mg L-1 of Al2O3NP and 1 mg L-1 of SA reduced total chlorophyll by 23.3% and carotenoids by 21.6% in microalgal compared to control. The gene expression study demonstrated that ATPF0C, Lhcb1, HydA, and psbA genes responsible for ATP synthesis and the photosynthetic system were significantly downregulated, while the Tas gene, which plays a major role in biodegradation of organic xenobiotic chemicals, was significantly upregulated at 1 and 100 mg L-1 of Al2O3NP. The S. obliquus removed 16.8% of SA at 15 mg L-1 in 14 days. However, the removal was slightly enhanced (18.8%) at same concentration of SA in the presence of 50 mg L-1 Al2O3NP. This result proves the stability of sulfacetamide biodegradation capacity of S. obliquus in the presence of Al2O3NP co-contamination. The metabolic analysis showed that SA was degraded into simpler byproducts such as sulfacarbamide, sulfaguanidine, sulfanilamide, 4-(methyl sulfonyl)aniline, and N-hydroxy-benzenamine which have lower ecotoxicity than SA, demonstrating that the ecotoxicity of sulfacetamide has significantly decreased after the microalgal degradation, suggesting the environmental feasibility of microalgae-mediated wastewater technology. This study provides a deeper understanding of the impact of nanoparticles such as Al2O3NP on aquatic ecosystems.
Asunto(s)
Microalgas , Nanopartículas , Scenedesmus , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Óxido de Aluminio/toxicidad , Carotenoides/metabolismo , Carotenoides/farmacología , Clorofila/metabolismo , Clorofila/farmacología , Ecosistema , Agua Dulce , Nanopartículas/toxicidad , Scenedesmus/metabolismo , Sulfacetamida/metabolismo , Sulfacetamida/farmacología , Sulfaguanidina/metabolismo , Sulfaguanidina/farmacología , Aguas Residuales , Xenobióticos/metabolismoRESUMEN
In this study, activated carbon from corncobs was successfully synthesized by hydrothermal carbonization and hydrochemical activation at low temperatures, followed by pyrolysis. A developed method of hydrochemical activation of hydrochar that uses only small amounts of chemicals is a promising approach. After activation, the activator residues in the hydrothermal product can constantly act as a chemical activator during pyrolysis to form corncob-activated carbon (AHC-KOH), which had specific surface area of 965.028 m2/g and oxygenated functional groups of 0.3780 mmol/g, 31.67 and 4 times, respectively, of those of the inactivated sample. AHC-KOH was used to study the adsorption characteristics of methylene blue (MB). The MB adsorption efficiency of AHC-KOH was the highest at 489.560 mg/g, which was considerably higher than that of activated carbons produced from other biomasses. The isotherm equilibrium and adsorbent kinetics parameters of MB adsorption on AHC-KOH were also determined using the Langmuir isotherm model (R2 = 0.99) and pseudo-second-order kinetic model (R2 > 0.99). Thus, the results indicate that an inexpensive adsorbent produced from corncobs using the above method is a promising material for wastewater treatment.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Cinética , Azul de Metileno/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Zea maysRESUMEN
Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.
Asunto(s)
Cyprinidae , Fenol , Contaminantes del Agua , Animales , Humanos , Agroquímicos , Carbohidratos , Cyprinidae/metabolismo , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Hemoglobinas/metabolismo , Lípidos , Fenol/toxicidad , Monoéster Fosfórico Hidrolasas/metabolismo , Contaminantes del Agua/química , Contaminantes del Agua/toxicidadRESUMEN
The goal of this study was to come up with an efficient method for treating cheese production wastewater. Because the effluent has a higher concentration of organic and inorganic materials, the indigenous microbial treatment process was used to effectively remove total dissolved solids (TDS), chemical oxygen demand (COD), and color without the addition of any nutrients. The indigenous microorganisms were tested for color, TDS, and COD elimination by growing them in "nutrient broth medium" loaded with different amounts of cheese effluent. The isolates were identified by 16S rRNA sequencing, and the results revealed that strain 1 was Enterobacter cloacae, strain 2 was Lactococcus garvieae, and strains 3 and 4 were Bacillus cereus and Bacillus mycoides, respectively. After 36 h of incubation, the data were evaluated. Among all the microbes, E. cloacae reduced TDS and COD from the effluent the most (80 ± 0.2% and 87 ± 0.4% COD, respectively). When compared to individual species, consortia were more efficient (86 ± 0.2% TDS and 90 ± 0.3% COD). On treatment, the correlation coefficient "r" for TDS and COD elimination was found to be 1, resulting in a positive linear connection. The current study suggests that microbial therapies are both effective and environmentally beneficial.
Asunto(s)
Queso , Contaminantes Ambientales , Monitoreo del Ambiente , ARN Ribosómico 16S , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/químicaRESUMEN
Myricetin is categorized under the secondary metabolite flavonoid which includes a diverse range of consumable plant parts, and it has a potential against several classes of cancer including cancers and tumors. In the present study, the anticancer potential of the unique flavonoid-myricetin in A549 lung cancer cells was evaluated. Among different doses of myricetin, 73 µg/ml was more effective to prevent the cancer cell growth. It also promoted sub-G1 phase aggregation of cells and a equivalent decrease in the fraction of cells entering the S and subsequent phase which indicates apoptotic cell death. Myricetin generated enormous free radicals and, altered the potential of mitochondrial membrane in A549 cells as paralleled to untreated cells. In addition, myricetin treatment intensified the expression of P53 and relegated the expression of EGFR in A549 cells. These results suggested that myricetin exhibits cytotoxic potential by arresting the progression of cell cycle and ROS-dependent mitochondria-mediated mortality in cancer A549 lung cancer cells and it would be useful to develop as a drug candidate for lung cancer therapeutics. In silico experiments were carried out against human EGFR and P53 tumor suppressor protein to gain more insights into the binding mode of the myricetin may act as significant potential for anticancer therapy.
Asunto(s)
Flavonoides/farmacología , Neoplasias Pulmonares/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Células A549 , Antineoplásicos/farmacología , Apoptosis , Ciclo Celular , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular , Simulación por Computador , Fragmentación del ADN , Receptores ErbB/metabolismo , Radicales Libres , Humanos , Concentración 50 Inhibidora , Ligandos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Iron oxide nanoparticles synthesis is an expanding area of research due of their magnetic properties and possible applications in several novel technologies. FeONPs are indispensable in the biomedical field for diagnosis, treatments and drug delivery and in bioremediation applications. The synthesis route of nanoparticles is a major concern because biological methods are eco-friendly, and chemical methods are considered toxic. The objective of this study is to synthesize FeONPs by two different methods and to compare their properties and efficiency in applications. FeONPs were synthesized and characterized by microscopic and various spectroscopic techniques. The synthesized FeONPs were screened for their cytotoxic activity on PBMCs using MTT assay and found to exhibit good biocompatibility. Moreover, the GS FeONPs exhibited potential antibacterial activities and meanwhile showed less toxicity in brine shrimp lethality assay. Hence, these nanoparticles are biocompatible, environmentally safe and can be utilized in many medical applications.
Asunto(s)
Tecnología Química Verde , Nanopartículas Magnéticas de Óxido de Hierro , Materiales Biocompatibles , Nanopartículas del MetalRESUMEN
Waste animal fats and proteins (WAFP) are rich in various animal by-products from food industries. On one hand, increasing production of huge amounts of WAFP brings a great challenge to their appropriate disposal, and raises severe risks to environment and life health. On the other hand, the high fat and protein contents in these animal wastes are valuable resources which can be reutilized in an eco-friendly and renewable way. Sustainable enzymatic technologies are promising methods for WAFP management. This review discussed the application of various enzymes in the conversion of WSFP to value-added biodiesel and bioactivate hydrolysates. New biotechnologies to discover novel enzymes with robust properties were proposed as well. This paper also presented the bio-utilization strategy of animal fat and protein wastes as alternative nutrient media for microorganism growth activities to yield important industrial enzymes cost-effectively.
Asunto(s)
Administración de Residuos , Animales , Biocombustibles , Biotecnología , Grasas , Industria de Alimentos , Residuos IndustrialesRESUMEN
Recently, the microbial fuel cell-based biosensor has been considered as an attractive technology for measuring wastewater quality such as biochemical oxygen demand (BOD). In this study, a mediator-less double compartment MFC based biosensor utilizing carbon felt as an anode electrode and inoculated with mixed culture was developed to improve the real application of a rapid BOD detection. This study aims to: (i) establish the effect of the operating conditions (i.e., pH, external resistance, fuel feeding rate) on MFC performance; (ii) investigate the correlation between biochemical oxygen demand (BOD) and signal output, and (iii) evaluate the operational stability of the biosensor. The presented result reveals that the maximum current and power production was obtained while 100 mM NaCl and 50 mM Phosphate buffer saline was used as a catholyte solution, neutral pH condition of media and fuel feeding rate at 0.3 mL min-1. Notably, a wider range of BOD concentration up to 300 mg L -1 can be obtained with the voltage output (R2 > 0.9901). Stable and steady power was produced by running MFC in 30 days when cells operated at 1000 Ω external resistance. Our research has some competition with the previous double chamber MFC in the upper limit of BOD detection. This results might help to increase the real application of MFC based BOD biosensor in real-time measurement.
Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Oxígeno/análisisRESUMEN
The steady increase in the world's population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.
Asunto(s)
Agricultura/métodos , Compostaje , Oligoquetos , Animales , Fertilizantes , SueloRESUMEN
The aim of this study was to degrade proteins in high-total dissolved solids (TDS)-containing wastewater produced during the soaking process in tanneries (tannery-TDS wastewater) using a halotolerant protease-assisted nanoporous carbon catalyst (STPNPAC). A halotolerant protease was obtained from the halophile, Lysinibacillus macroides, using animal fleshing as the substrate. The protease was immobilized using ethylene diamine (EDA)/glutaraldehyde functionalized nanoporous activated carbon (EGNPAC). The optimum conditions for the immobilization of protease were determined as time (120â¯min), pH (6), protease concentration (575-600 U/g), EGNPAC size, salinity, and temperature (30⯰C). The immobilization was confirmed by FTIR, TGA-DSC, SEM, and XRD analyses. The adsorption kinetics was consistent with a pseudo first order rate constant of 1.43â¯×â¯10-2 min-1. The thermodynamic parameters (ΔG, ΔH, and ΔS) confirmed the effective immobilization of the protease onto EGNPAC. STPNAPC was found to efficiently degrade the proteins in tannery-TDS wastewater, with a complete fragmentation time of 90â¯min at pH 6 and 30⯰C. Accordingly, the protein fragmentation was confirmed by UV-visible and UV-fluorescence spectroscopy, ESI-mass spectrometric analysis and circular dichroic studies. The formation of protein hydrolysates was confirmed by cyclic voltammetry and electrical impedance studies. BOD5: COD value, 0.426 of treated tannery-TDS wastewater may favor sequential biological treatment processes.
Asunto(s)
Carbono , Péptido Hidrolasas , Aguas Residuales , Purificación del Agua , Adsorción , Animales , Carbono/química , Catálisis , Técnicas Electroquímicas , Residuos Industriales , Cinética , Análisis Espectral , Termodinámica , Aguas Residuales/química , Purificación del Agua/métodosRESUMEN
The application of biochar pellet blended with pig manure compost was investigated to estimate its agro-environmental impacts and to evaluate its soil carbon sequestration and profit analysis during rice cultivation. The experiment consisted of four different treatments such as control as pig manure compost only, pig manure compost pellet (PMCP), biochar pellet blended with biochar and pig manure compost (4: 6 ratios, BCP), and slow release fertilizer (SRF). The application of chemical fertilizer and pig manure compost in the whole treatment except the BCP were 90-45-57â¯kgâ¯ha-1 (N-P-K) and 2600â¯kgâ¯ha-1, respectively, based on the recommended rates for rice cultivation at National Institute of Agricultural Sciences (NIAS). The BCP and SRF were applied with N 90â¯kgâ¯ha-1 basis only as basal application before transplanting. The pig manure compost, phosphorous and potassium were applied at basal application while nitrogen fertilizer was applied with three separations as basal and two additional applications. Results showed that concentrations of ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the BCP at an early stage of rice growth were lowest among the treatments, but their concentrations in the paddy water rapidly decreased at 21 days after transplanting. For paddy soil, NH4-N concentration in the SRF was continuously high compared to the BCP until 20 days of rice cultivation. For paddy water, phosphate phosphorous (PO4-P) concentrations in the BCP were three fold lower than the SRF at an early stage of rice growth. Similar pattern between potassium (K) concentrations in paddy water and potassium oxide (K2O) contents in surface soil was also observed during rice cultivation where their concentrations decreased abruptly 41 days after transplanting. Carbon sequestration and mitigation of carbon dioxide equivalency (CO2-eq.) emission in the BCP were higher at 1.65 tons ha-1 and 6.06 tons ha-1, respectively, than the control while result of its profit analysis was $145.59 (KAU, Korean Allowance Unit) per hectare during rice cultivation. The rice yield were not significantly different (pâ¯>â¯0.05) among all treatments.
Asunto(s)
Oryza , Suelo , Animales , Secuestro de Carbono , Carbón Orgánico , Fertilizantes , Estiércol , Porcinos , AguaRESUMEN
This study investigated the effect of light intensity on three various microalga consortia collected from natural ecological water bodies (named A, B and C) towards their fatty acid profiling and fractions, carbohydrate and protein production at different light intensities of 100, 200 and 300⯵molâ¯m-2â¯s-1. The results indicating that increasing light intensity positively correlated with the lipid production than carbohydrate and protein. Irrespective to the solids (Total and Volatile Solid) content, lipids and carbohydrate has varied significantly. Consortia C showed higher productivity toward lipids, whereas consortia A and B accumulated more carbohydrate and protein, respectively. The microscopic images revealed the breakdown of cells during the increase in light intensity, in spite, the similar algal species were observed in all consortia experimented. Principal component analysis (PCA) revealed that low light intensity aid relatively in high protein, Total Nitrogen and Total Phosphorus, meanwhile high intensity attributed carbohydrates and unsaturated fatty acids (USFA) contents.