Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infection ; 52(3): 955-983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38133713

RESUMEN

PURPOSE: The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS: Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS: The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-ß, SDF-1α, TNF-α, TNF-ß, VEGF, PDGF-BB, TRAIL, ß-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION: Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Citocinas , Células Epiteliales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/inmunología , COVID-19/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , SARS-CoV-2/inmunología , Citocinas/sangre , Femenino , Masculino , Persona de Mediana Edad , Células Epiteliales/virología , Células Epiteliales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Anciano , Células A549 , Pulmón/patología , Pulmón/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/sangre , Adulto , Anticuerpos Antivirales/sangre , Fosfoproteínas
2.
Nano Lett ; 22(4): 1580-1586, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35073104

RESUMEN

Strontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO3 buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form. The spectroscopic measurements reveal the modified Ti-O orbital hybridization that causes the Ti ion to deviate from its nominal 4+ valency (3d0 configuration) with excess delocalized 3d electrons. Additionally, the Ti ion in TiO6 octahedron exhibits an off-center displacement. The inherent symmetry lowering in ultrathin freestanding films offers an alternative way to achieve tunable electronic structures that are of paramount importance for future technological applications.

3.
J Chem Phys ; 157(4): 044104, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35922350

RESUMEN

In this work, we present a theoretical method to study the effect of magnetic field on trions in two-dimensional materials. The trion is modeled by a three-particle Schrödinger equation and the magnetic-field interaction is included by means of a vector potential in symmetric gauge. By using a coordinate transformation and a unitary transformation, the trion Hamiltonian can be converted into the sum of a translational term describing the Landau quantization for the trion center-of-mass motion, an internal term describing the trion binding, and a translational-internal coupling term depending linearly on the magnetic-field strength. The trion eigenenergy and wavefunction can then be calculated efficiently by using a variational method, and the quantum numbers of trions in magnetic fields can be assigned. The eigenenergies, binding energies, and correlation energies of three trion branches, which correspond to the ground-state trion and two excited-state trions solved from the trion Hamiltonian in zero magnetic field, are studied numerically in finite magnetic fields. The present method is applied to study the magnetic-field dependence of trion energy levels in hole-doped WSe2 monolayers. The binding energies and correlation energies of positive trions in WSe2 are investigated over a range of magnetic fields up to 25 T.

4.
J Chem Phys ; 155(2): 024110, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34266270

RESUMEN

In this work, trions in two-dimensional (2D) space are studied by the variational method with trial wavefunctions being constructed by 2D slater-type orbitals. Via this method, trion energy levels and wavefunctions can be calculated efficiently with fairly good accuracy. We first apply this method to study trion energy levels in a 2D hydrogen-like system with respect to a wide range of mass ratios and screening lengths. We find that the ground-state trion is bound for the whole parameter range, and an excited-state trion with antisymmetric permutation of electrons with finite angular momentum is bound for large electron-hole mass ratios or long screening lengths. The binding energies of ground-state trions calculated by the present method agree well with those calculated by more sophisticated but computationally demanding methods. We then calculate trion binding energies in various monolayer transition metal dichalcogenides (TMDCs) by using this method with the inclusion of electron-hole exchange (EHX) interaction. For TMDCs, we found that the effect of EHX can be significant in determining the trion binding energy and the possible existence of stable excited-state trions.

5.
Nano Lett ; 18(12): 7742-7748, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30407834

RESUMEN

Photostriction, optical stimulus driven mechanical deformation in materials, provides a solution toward next-generation technology. Here, the giant photostriction (∼2% change of lattice) of epitaxial strontium iridate (SrIrO3) films under illumination at room temperature is revealed via power-dependent Raman scattering, which is significantly larger as compared to conventional inorganic materials. The time scale and mechanism of this giant photostriction in SrIrO3 are further studied through time-resolved transient reflectivity measurements. The main mechanism is determined to be the electron-phonon coupling. In addition, we find that such an exotic behavior happens within few picoseconds and remains up to 107 cyclic on/off operations. The observation of giant photostriction in SrIrO3 films with superior endurance promises the advance of shape responsive solids that are sensitive to environmental stimuli, which could be widely utilized for multifunctional optoelectronics and optomechanical devices.

6.
J Digit Imaging ; 32(5): 713-727, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30877406

RESUMEN

The shape and contour of the lesion are shown to be effective features for physicians to identify breast tumor as benign or malignant. The region of the lesion is usually manually created by the physician according to their clinical experience; therefore, contouring tumors on breast magnetic resonance imaging (MRI) is difficult and time-consuming. For this purpose, an automatic contouring method for breast tumors was developed for less burden in the analysis and to decrease the observed bias to help in making decisions clinically. In this study, a multiview segmentation method for detecting and contouring breast tumors in MRI was represented. The preprocessing of the proposed method reduces any amount of noises but preserves the shape and contrast of the breast tumor. The two-dimensional (2D) level-set segmentation method extracts contours of breast tumors from the transverse, coronal, and sagittal planes. The obtained contours are further utilized to generate appropriate three-dimensional (3D) contours. Twenty breast tumor cases were evaluated and the simulation results show that the proposed contouring method was an efficient method for delineating 3D contours of breast tumors in MRI.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Femenino , Humanos
7.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L654-L669, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351433

RESUMEN

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are high-mortality and life-threatening diseases that are associated with neutrophil activation and accumulation within lung tissue. Emerging evidence indicates that neutrophil-platelet aggregates (NPAs) at sites of injury increase acute inflammation and contribute to the development of ALI. Although numerous studies have increased our understanding of the pathophysiology of ALI, there is still a lack of innovative and useful treatments that reduce mortality, emphasizing that there is an urgent need for novel treatment strategies. In this study, a new series of small compounds of ß-nitrostyrene derivatives (BNSDs) were synthesized, and their anti-inflammatory bioactivities on neutrophils and platelets were evaluated. The new small compound C7 modulates neutrophil function by inhibiting superoxide generation and elastase release. Compound C7 elicits protective effects on LPS-induced paw edema and acute lung injury via the inhibition of neutrophil accumulation, proinflammatory mediator release, platelet aggregation, myeloperoxidase activity, and neutrophil extracellular trap (NET) release. NET formation was identified as the bridge for the critical interactions between neutrophils and platelets by confocal microscopy and flow cytometry. This research provides new insights for elucidating the complicated regulation of neutrophils and platelets in ALI and sheds further light on future drug development strategies for ALI/ARDS and acute inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Plaquetas/efectos de los fármacos , Trampas Extracelulares/metabolismo , Lipopolisacáridos/toxicidad , Neutrófilos/efectos de los fármacos , Edema Pulmonar/tratamiento farmacológico , Estirenos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Plaquetas/inmunología , Plaquetas/metabolismo , Plaquetas/patología , Adhesión Celular , Células Cultivadas , Trampas Extracelulares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Edema Pulmonar/inducido químicamente , Edema Pulmonar/inmunología , Edema Pulmonar/patología
8.
Cancer Sci ; 109(5): 1292-1299, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29575529

RESUMEN

Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma.


Asunto(s)
Antineoplásicos/farmacología , Glicoproteínas de Membrana/genética , Neoplasias/genética , Regulación hacia Arriba , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Regulación hacia Arriba/efectos de los fármacos
9.
J Chem Phys ; 146(13): 134113, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28390389

RESUMEN

We extend the quasi-particle renormalized perturbation theory developed in our previous work [Y.-W. Chang and B.-Y. Jin, J. Chem. Phys. 141, 064111 (2014)] based on nonequilibrium Green's function techniques to study the effects of electron correlation on the charge transport process in molecular junctions. In this formalism, the single-impurity Anderson's model is used as the zeroth-order Hamiltonian of each channel orbital, and the inter-channel interactions are treated by perturbation corrections. Within this scheme, the on-channel Coulomb repulsion and the single-particle spectral line-broadening can be incorporated in the zeroth-order approximation, and thus the Coulomb blockade and coherent tunneling through individual channels can be described properly. Beyond the zeroth-order description, electron correlation can be included through the self-energy corrections in the forms of the second-Born approximation and the GW approximation. The effects of electron correlation on molecular junctions are manifested as the orbital energy correction, correlated transport process, and collisional line-broadening. As an application, we have applied the present formalism to phenyl-based molecular junctions described by the Pariser-Parr-Pople Hamiltonian. The signatures of electron correlation in the simulated current-voltage curves are identified and discussed.

10.
Arterioscler Thromb Vasc Biol ; 34(11): 2404-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25212232

RESUMEN

OBJECTIVE: The essential role of platelet activation in hemostasis and thrombotic diseases focuses attention on unveiling the underlying intracellular signals of platelet activation. Disabled-2 (Dab2) has been implicated in platelet aggregation and in the control of clotting responses. However, there is not yet any in vivo study to provide direct evidence for the role of Dab2 in hemostasis and platelet activation. APPROACH AND RESULTS: Megakaryocyte lineage-restricted Dab2 knockout (Dab2(-/-)) mice were generated to delineate in vivo functions of Dab2 in platelets. Dab2(-/-) mice appeared normal in size with prolonged bleeding time and impaired thrombus formation. Although normal in platelet production and granule biogenesis, Dab2(-/-) platelets elicited a selective defect in platelet aggregation and spreading on fibrinogen in response to low concentrations of thrombin, but not other soluble agonists. Investigation of the role of Dab2 in thrombin signaling revealed that Dab2 has no effect on the expression of thrombin receptors and the outside-in signaling. Dab2(-/-) platelets stimulated by low concentrations of thrombin were normal in Gαq-mediated calcium mobilization and protein kinase C activation, but were defective in Gα12/13-mediated RhoA-ROCKII activation. The attenuated Gα12/13 signaling led to impaired ADP release, Akt-mammalian target of rapamycin and integrin αIIbß3 activation, fibrinogen binding, and clot retraction. The defective responses of Dab2(-/-) platelets to low concentrations of thrombin stimulation may contribute to the impaired hemostasis and thrombosis of Dab2(-/-) mice. CONCLUSIONS: This study sheds new insight in platelet biology and represents the first report demonstrating that Dab2 is a key regulator of hemostasis and thrombosis by functional interplay with Gα12/13-mediated thrombin signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Unión al ADN/fisiología , Hemostasis/fisiología , Activación Plaquetaria/fisiología , Transducción de Señal/fisiología , Trombina/fisiología , Trombosis/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Difosfato/fisiología , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/fisiología , Proteína Quinasa C/fisiología , Serina-Treonina Quinasas TOR/fisiología , Quinasas Asociadas a rho/fisiología , Proteína de Unión al GTP rhoA/fisiología
11.
J Chem Phys ; 141(6): 064111, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25134555

RESUMEN

We study charge transport through molecular junctions in the presence of electron-electron interaction using the nonequilibrium Green's function techniques and the renormalized perturbation theory. In the perturbation treatment, the zeroth-order Hamiltonian of the molecular junction is composed of independent single-impurity Anderson's models, which act as the channels where charges come through or occupy, and the interactions between different channels are treated as the perturbation. Using this scheme, the effects of molecule-lead, electron-electron, and hopping interactions are included nonperturbatively, and the charge transport processes can thus be studied in the intermediate parameter range from the Coulomb blockade to the coherent tunneling regimes. The concept of quasi-particles is introduced to describe the kinetic process of charge transport, and then the electric current can be studied and calculated. As a test study, the Hubbard model is used as the molecular Hamiltonian to simulate dimeric and trimeric molecular junctions. Various nonlinear current-voltage characteristics, including Coulomb blockade, negative differential resistance, rectification, and current hysteresis, are shown in the calculations, and the mechanisms are elucidated.

12.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446524

RESUMEN

Epithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g., wound healing) and pathological (e.g., tumor metastasis) processes. However, the underlying mechanism for such a default remains unclear. In this study, we used the human head and neck squamous cell carcinoma (HNSCC) SAS cells as a model and found that loss of cell-cell adhesion induced reactive oxygen species (ROS) generation and vimentin expression, both of which were required for SAS cell migration upon loss of cell-cell adhesion. We demonstrated that Tiam1-mediated Rac1 activation was responsible for the ROS generation through NADPH-dependent oxidases. Moreover, the ROS-Src-STAT3 signaling pathway that led to vimentin expression was important for SAS cell migration. The activation of ROS, Src, and STAT3 was also detected in tumor biopsies from HNSCC patients. Notably, activated STAT3 was more abundant at the tumor invasive front and correlated with metastatic progression of HNSCC. Together, our results unveil a mechanism of how cells trigger their migration upon loss of cell-cell adhesion and highlight an important role of the ROS-Src-STAT3 signaling pathway in the progression of HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , NADPH Oxidasas , Humanos , Adhesión Celular , Vimentina , Especies Reactivas de Oxígeno , Carcinoma de Células Escamosas de Cabeza y Cuello , Movimiento Celular , Proteína de Unión al GTP rac1
13.
J Pers Med ; 13(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38003842

RESUMEN

BACKGROUND: Eustachian tube dysfunction (ETD) is a common disorder causing ear pressure, pain, and hearing loss. Balloon Eustachian tuboplasty (BET) is an emerging technique for dilating the Eustachian tube and treating ETD. Whether adding myringotomy improves BET efficacy is controversial. METHODS: This retrospective study included 95 ETD patients undergoing BET alone (n = 44) or BET with myringotomy (BET + M; n = 51) between June 2020 and August 2021 at a single medical center. The primary outcome was the change in ETDQ-7 symptom scores from baseline to 6 months after treatment. Secondary outcomes included audiometry, endoscopy, Valsalva maneuver, and complications. RESULTS: The ETDQ-7 scores improved significantly after treatment in both groups (p < 0.001), without significant between-group differences (p = 0.417). No significant differences occurred in the audiometry, endoscopy, and Valsalva results or in most complications between groups. One BET + M patient had a persistent tympanic membrane perforation. CONCLUSIONS: Both BET alone and BET + M effectively and safely improved the subjective and objective ETD outcomes. However, adding myringotomy did not further improve the outcomes over BET alone, while it incurred risks such as persistent perforation. BET alone may sufficiently treat ETD without requiring myringotomy in this cohort. Further randomized controlled trials should identify optimal candidates for BET alone versus combined approaches.

14.
Adv Sci (Weinh) ; 10(15): e2204514, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37026630

RESUMEN

As a type of immunogenic cell death, ferroptosis participates in the creation of immunoactive tumor microenvironments. However, knowledge of spatial location of tumor cells with ferroptosis signature in tumor environments and the role of ferroptotic stress in inducing the expression of immune-related molecules in cancer cells is limited. Here the spatial association of the transcriptomic signatures is demonstrated for ferroptosis and inflammation/immune activation located in the invasive front of head and neck squamous cell carcinoma (HNSCC). The association between ferroptosis signature and inflammation/immune activation is more prominent in HPV-negative HNSCC compared to HPV-positive ones. Ferroptotic stress induces PD-L1 expression through reactive oxygen species (ROS)-elicited NF-κB signaling pathway and calcium influx. Priming murine HNSCC with the ferroptosis inducer sensitizes tumors to anti-PD-L1 antibody treatment. A positive correlation between the ferroptosis signature and the active immune cell profile is shown in the HNSCC samples. This study reveals a subgroup of ferroptotic HNSCC with immune-active signatures and indicates the potential of priming HNSCC with ferroptosis inducers to increase the antitumor efficacy of immune checkpoint inhibitors.


Asunto(s)
Ferroptosis , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
15.
Cell Rep Med ; 4(8): 101154, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586318

RESUMEN

Strategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer. Moreover, this bifunctional protein not only leads to the anticipated reduction in tumor-associated macrophages but also triggers proliferation, activation, and metabolic reprogramming of CD8+ T cells. Furthermore, it extends the clonotype diversity of tumor-infiltrated T cells and shifts the tumor microenvironment (TME) to an immune-active state. This study suggests an efficient strategy for designing immunotherapeutic agents by fusing a potent immunostimulatory molecule to an antibody targeting TME-enriched factors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Linfocitos T CD8-positivos , Interleucina-10/metabolismo , Neoplasias/patología , Antineoplásicos/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Microambiente Tumoral
16.
J Chem Phys ; 136(2): 024110, 2012 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-22260567

RESUMEN

Many-body perturbation theory is used to investigate the effect of π-electron correlations on the quasi-particle band structures of conjugated polymers at the level of the Pariser-Parr-Pople model. The self-consistent GW approximation with vertex corrections to both the self-energy and the polarization in Hedin's equations is employed in order to eliminate self-interaction errors and include the effects of electron-hole attraction in screening processes. The dynamic inverse dielectric function is constructed from the generalized plasmon-pole approximation with the static dressed polarization given by the coupled-perturbed Hartree-Fock equation. The bandgaps of trans-polyacetylene, trans-polyphenylenevinylene and poly(para)phenylene are calculated by both the Hartree-Fock and GW approximation, and a lowering of bandgaps due to electron correlations is found. We conclude that both dielectric screening and vertex corrections are important for calculating the quasi-particle bandgaps of conjugated polymers.


Asunto(s)
Electrones , Polímeros/química , Estructura Molecular , Teoría Cuántica
17.
Am J Cancer Res ; 12(12): 5462-5483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36628281

RESUMEN

Numerous reports indicate that enhanced expression of Y-box binding protein-1 (YB-1) in tumor cells is strongly associated with tumorigenesis, aggressiveness, drug resistance, as well as poor prognosis in several types of cancers, and YB-1 is considered to be an oncogene. The molecular mechanism contributing to the regulation of the biological activities of YB-1 remains obscure. Sumoylation, a post-translational modification involving the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to a target protein, plays key roles in the modulation of protein functions. In this study, our results revealed that YB-1 is sumoylated and that Lys26 is a critical residue for YB-1 sumoylation. Moreover, YB-1 was found to directly interact with SUMO proteins, and disruption of the SUMO-interacting motif (SIM) of YB-1 not only interfered with this interaction but also diminished YB-1 sumoylation. The subcellular localization, protein stability, and transcriptional regulatory activity of YB-1 were not significantly affected by sumoylation. However, decreased sumoylation disrupted the interaction between YB-1 and PCNA as well as YB-1-mediated inhibition of the MutSα/PCNA interaction and MutSα mismatch binding activity, indicating a functional role of YB-1 sumoylation in inducing DNA mismatch repair (MMR) deficiency and spontaneous mutations. The MMR machinery also recognizes alkylator-modified DNA adducts to signal for cell death. We further demonstrated that YB-1 sumoylation is crucial for the inhibition of SN1-type alkylator MNNG-induced cytotoxicity, G2/M-phase arrest, apoptosis, and the MMR-dependent DNA damage response. Collectively, these results provide molecular explanations for the impact of YB-1 sumoylation on MMR deficiency and alkylator tolerance, which may provide insight for designing therapeutic strategies for malignancies and alkylator-resistant cancers associated with YB-1 overexpression.

18.
Nat Commun ; 13(1): 2565, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538081

RESUMEN

Epitaxial growth is of significant importance over the past decades, given it has been the key process of modern technology for delivering high-quality thin films. For conventional heteroepitaxy, the selection of proper single crystal substrates not only facilitates the integration of different materials but also fulfills interface and strain engineering upon a wide spectrum of functionalities. Nevertheless, the lattice structure, regularity and crystalline orientation are determined once a specific substrate is chosen. Here, we reveal the growth of twisted oxide lateral homostructure with controllable in-plane conjunctions. The twisted lateral homostructures with atomically sharp interfaces can be composed of epitaxial "blocks" with different crystalline orientations, ferroic orders and phases. We further demonstrate that this approach is universal for fabricating various complex systems, in which the unconventional physical properties can be artificially manipulated. Our results establish an efficient pathway towards twisted lateral homostructures, adding additional degrees of freedom to design epitaxial films.

19.
Sci Rep ; 11(1): 5250, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664335

RESUMEN

We have successfully fabricated high quality single crystalline La0.7Sr0.3MnO3 (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L3-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO3 substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process. The 3sPFY spectrum obtained from analyzing the RIXS maps offers a powerful way to probe the bulk electronic structures in thin films and heterostructures when recording the XAS spectra in the transmission mode is not available.

20.
Nanoscale Res Lett ; 15(1): 172, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32857192

RESUMEN

Researchers have long been seeking multifunctional materials that can be adopted for next-generation nanoelectronics, and which, hopefully, are compatible with current semiconductor processing for further integration. Along this vein, complex oxides have gained numerous attention due to their versatile functionalities. Despite the fact that unbounded potential of complex oxides has been examined over the past years, one of the major challenges lies in the direct integration of these functional oxides onto existing devices or targeted substrates that are inherently incompatible in terms of oxide growth. To fulfill this goal, freestanding processes have been proposed, in which wet etching of inserted sacrificial layers is regarded as one of the most efficient ways to obtain epitaxial high-quality thin films. In this study, we propose using an alternative oxide, YBa2Cu3O7 (YCBO), as a sacrificial layer, which can be easily dissolved in light hydrochloric acid in a more efficient way, while protecting selected complex oxides intact. The high epitaxial quality of the selected complex oxide before and after freestanding process using YBCO as a sacrificial layer is comprehensively studied via a combination of atomic force microscopy, X-ray diffraction, transmission electron microscopy, and electrical transports. This approach enables direct integration of complex oxides with arbitrary substrates and devices and is expected to offer a faster route towards the development of low-dimensional quantum materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA