Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biopolymers ; 115(2): e23559, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37421636

RESUMEN

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.


Asunto(s)
Relojes Circadianos , Cianobacterias , Relojes Circadianos/genética , Reproducibilidad de los Resultados , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo
2.
J Am Chem Soc ; 144(1): 184-194, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34979080

RESUMEN

As the only circadian oscillator that can be reconstituted in vitro with its constituent proteins KaiA, KaiB, and KaiC using ATP as an energy source, the cyanobacterial circadian oscillator serves as a model system for detailed mechanistic studies of day-night transitions of circadian clocks in general. The day-to-night transition occurs when KaiB forms a night-time complex with KaiC to sequester KaiA, the latter of which interacts with KaiC during the day to promote KaiC autophosphorylation. However, how KaiB forms the complex with KaiC remains poorly understood, despite the available structures of KaiB bound to hexameric KaiC. It has been postulated that KaiB-KaiC binding is regulated by inter-KaiB cooperativity. Here, using spin labeling continuous-wave electron paramagnetic resonance spectroscopy, we identified and quantified two subpopulations of KaiC-bound KaiB, corresponding to the "bulk" and "edge" KaiBC sites in stoichiometric and substoichiometric KaiBiC6 complexes (i = 1-5). We provide kinetic evidence to support the intermediacy of the "edge" KaiBC sites as bridges and nucleation sites between free KaiB and the "bulk" KaiBC sites. Furthermore, we show that the relative abundance of "edge" and "bulk" sites is dependent on both KaiC phosphostate and KaiA, supporting the notion of phosphorylation-state controlled inter-KaiB cooperativity. Finally, we demonstrate that the interconversion between the two subpopulations of KaiC-bound KaiB is intimately linked to the KaiC phosphorylation cycle. These findings enrich our mechanistic understanding of the cyanobacterial clock and demonstrate the utility of EPR in elucidating circadian clock mechanisms.


Asunto(s)
Relojes Circadianos
3.
Proc Natl Acad Sci U S A ; 115(30): E7174-E7183, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29991601

RESUMEN

The recurrent pattern of light and darkness generated by Earth's axial rotation has profoundly influenced the evolution of organisms, selecting for both biological mechanisms that respond acutely to environmental changes and circadian clocks that program physiology in anticipation of daily variations. The necessity to integrate environmental responsiveness and circadian programming is exemplified in photosynthetic organisms such as cyanobacteria, which depend on light-driven photochemical processes. The cyanobacterium Synechococcus elongatus PCC 7942 is an excellent model system for dissecting these entwined mechanisms. Its core circadian oscillator, consisting of three proteins, KaiA, KaiB, and KaiC, transmits time-of-day signals to clock-output proteins, which reciprocally regulate global transcription. Research performed under constant light facilitates analysis of intrinsic cycles separately from direct environmental responses but does not provide insight into how these regulatory systems are integrated during light-dark cycles. Thus, we sought to identify genes that are specifically necessary in a day-night environment. We screened a dense bar-coded transposon library in both continuous light and daily cycling conditions and compared the fitness consequences of loss of each nonessential gene in the genome. Although the clock itself is not essential for viability in light-dark cycles, the most detrimental mutations revealed by the screen were those that disrupt KaiA. The screen broadened our understanding of light-dark survival in photosynthetic organisms, identified unforeseen clock-protein interaction dynamics, and reinforced the role of the clock as a negative regulator of a nighttime metabolic program that is essential for S. elongatus to survive in the dark.


Asunto(s)
Proteínas Bacterianas , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Estudio de Asociación del Genoma Completo , Fotosíntesis/fisiología , Transducción de Señal/fisiología , Synechococcus , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
4.
Biochemistry ; 59(26): 2387-2400, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32453554

RESUMEN

The cyanobacterial circadian clock in Synechococcus elongatus consists of three proteins, KaiA, KaiB, and KaiC. KaiA and KaiB rhythmically interact with KaiC to generate stable oscillations of KaiC phosphorylation with a period of 24 h. The observation of stable circadian oscillations when the three clock proteins are reconstituted and combined in vitro makes it an ideal system for understanding its underlying molecular mechanisms and circadian clocks in general. These oscillations were historically monitored in vitro by gel electrophoresis of reaction mixtures based on the differing electrophoretic mobilities between various phosphostates of KaiC. As the KaiC phospho-distribution represents only one facet of the oscillations, orthogonal tools are necessary to explore other interactions to generate a full description of the system. However, previous biochemical assays are discontinuous or qualitative. To circumvent these limitations, we developed a spin-labeled KaiB mutant that can differentiate KaiC-bound KaiB from free KaiB using continuous-wave electron paramagnetic resonance spectroscopy that is minimally sensitive to KaiA. Similar to wild-type (WT-KaiB), this labeled mutant, in combination with KaiA, sustains robust circadian rhythms of KaiC phosphorylation. This labeled mutant is hence a functional surrogate of WT-KaiB and thus participates in and reports on autonomous macroscopic circadian rhythms generated by mixtures that include KaiA, KaiC, and ATP. Quantitative kinetics could be extracted with improved precision and time resolution. We describe design principles, data analysis, and limitations of this quantitative binding assay and discuss future research necessary to overcome these challenges.


Asunto(s)
Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Synechococcus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Synechococcus/genética , Synechococcus/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(42): 16847-51, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22967510

RESUMEN

The oscillator of the circadian clock of cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, which together generate a self-sustained ∼24-h rhythm of phosphorylation of KaiC. The mechanism propelling this oscillator has remained elusive, however. We show that stacking interactions between the CI and CII rings of KaiC drive the transition from the phosphorylation-specific KaiC-KaiA interaction to the dephosphorylation-specific KaiC-KaiB interaction. We have identified the KaiB-binding site, which is on the CI domain. This site is hidden when CI domains are associated as a hexameric ring. However, stacking of the CI and CII rings exposes the KaiB-binding site. Because the clock output protein SasA also binds to CI and competes with KaiB for binding, ring stacking likely regulates clock output. We demonstrate that ADP can expose the KaiB-binding site in the absence of ring stacking, providing an explanation for how it can reset the clock.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Modelos Moleculares , Adenosina Difosfato/metabolismo , Proteínas Bacterianas/química , Sitios de Unión/genética , Cromatografía de Afinidad , Cromatografía en Gel , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Clonación Molecular , Cianobacterias/metabolismo , Escherichia coli , Espectroscopía de Resonancia Magnética , Fosforilación , Espectrometría de Fluorescencia
6.
Proc Natl Acad Sci U S A ; 108(35): 14431-6, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21788479

RESUMEN

In the cyanobacterial circadian oscillator, KaiA and KaiB alternately stimulate autophosphorylation and autodephosphorylation of KaiC with a periodicity of approximately 24 h. KaiA activates autophosphorylation by selectively capturing the A loops of KaiC in their exposed positions. The A loops and sites of phosphorylation, residues S431 and T432, are located in the CII ring of KaiC. We find that the flexibility of the CII ring governs the rhythm of KaiC autophosphorylation and autodephosphorylation and is an example of dynamics-driven protein allostery. KaiA-induced autophosphorylation requires flexibility of the CII ring. In contrast, rigidity is required for KaiC-KaiB binding, which induces a conformational change in KaiB that enables it to sequester KaiA by binding to KaiA's linker. Autophosphorylation of the S431 residues around the CII ring stabilizes the CII ring, making it rigid. In contrast, autophosphorylation of the T432 residues offsets phospho-S431-induced rigidity to some extent. In the presence of KaiA and KaiB, the dynamic states of the CII ring of KaiC executes the following circadian rhythm: CII STflexible → CIISpTflexible → CIIpSpTrigid → CIIpSTvery-rigid → CIISTflexible. Apparently, these dynamic states govern the pattern of phosphorylation, ST → SpT → pSpT → pST → ST. CII-CI ring-on-ring stacking is observed when the CII ring is rigid, suggesting a mechanism through which the ATPase activity of the CI ring is rhythmically controlled. SasA, a circadian clock-output protein, binds to the CI ring. Thus, rhythmic ring stacking may also control clock-output pathways.


Asunto(s)
Proteínas Bacterianas/fisiología , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Cianobacterias/fisiología , Proteínas Bacterianas/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Simulación de Dinámica Molecular , Fosforilación , Fosfotransferasas/fisiología
7.
Proc Natl Acad Sci U S A ; 107(13): 5804-9, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231482

RESUMEN

The circadian rhythms exhibited in the cyanobacterium Synechococcus elongatus are generated by an oscillator comprised of the proteins KaiA, KaiB, and KaiC. An external signal that commonly affects the circadian clock is light. Previously, we reported that the bacteriophytochrome-like protein CikA passes environmental signals to the oscillator by directly binding a quinone and using cellular redox state as a measure of light in this photosynthetic organism. Here, we report that KaiA also binds the quinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), and the oxidized form of DBMIB, but not its reduced form, decreases the stability of KaiA in vivo, causes multimerization in vitro, and blocks KaiA stimulation of KaiC phosphorylation, which is central to circadian oscillation. Our data suggest that KaiA directly senses environmental signals as changes in redox state and modulates the circadian clock.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Dibromotimoquinona/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Synechococcus/genética
8.
Nat Struct Mol Biol ; 29(8): 767-773, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864164

RESUMEN

P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gßγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gßγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Neoplasias , Sitios de Unión , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Metástasis de la Neoplasia , Neoplasias/metabolismo , Dominios Proteicos , Transducción de Señal
9.
Methods Mol Biol ; 2130: 3-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33284432

RESUMEN

Stochastic diffusion of a solution of fluorophores after photoselection reduces the polarization of emission, or fluorescence anisotropy. Because this randomization process is slower for larger molecules, fluorescence anisotropy is effective for measuring the kinetics of protein-binding events. Here, we describe how to use the technique to carry out real-time observations in vitro of the cyanobacterial circadian clock.


Asunto(s)
Relojes Circadianos , Cianobacterias/metabolismo , Cianobacterias/genética , Polarización de Fluorescencia/métodos
10.
Sci Signal ; 14(681)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947796

RESUMEN

The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gßγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gßγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Neoplasias , Fosfohidrolasa PTEN , Proteína de Unión al GTP rac1 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Mutación , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
11.
Protein Sci ; 29(11): 2274-2280, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949024

RESUMEN

Biofilms are accumulations of microorganisms embedded in extracellular matrices that protect against external factors and stressful environments. Cyanobacterial biofilms are ubiquitous and have potential for treatment of wastewater and sustainable production of biofuels. But the underlying mechanisms regulating cyanobacterial biofilm formation are unclear. Here, we report the solution NMR structure of a protein, Se0862, conserved across diverse cyanobacterial species and involved in regulation of biofilm formation in the cyanobacterium Synechococcus elongatus PCC 7942. Se0862 is a class α+ß protein with ααßßßßαα topology and roll architecture, consisting of a four-stranded ß-sheet that is flanked by four α-helices on one side. Conserved surface residues constitute a hydrophobic pocket and charged regions that are likely also present in Se0862 orthologs.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas , Synechococcus , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Synechococcus/química , Synechococcus/fisiología
12.
Methods Protoc ; 2(2)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31164621

RESUMEN

Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC. Here, we describe a more sensitive method that allows real-time monitoring of the clock reaction. By labeling one of the clock proteins with a fluorophore, in this case KaiB, the in vitro clock reaction can be monitored by fluorescence anisotropy on the minutes time scale for weeks.

13.
Structure ; 14(12): 1755-65, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17161366

RESUMEN

The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Prolina/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Proteína Huntingtina , Imagenología Tridimensional , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Marcadores de Spin , Dominios Homologos src
14.
Science ; 355(6330): 1174-1180, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302851

RESUMEN

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes. They reveal how the metamorphic properties of KaiB, a protein that adopts two distinct folds, and the post-adenosine triphosphate hydrolysis state of KaiC create a hub around which nighttime signaling events revolve, including inactivation of KaiA and reciprocal regulation of the mutually antagonistic signaling proteins, SasA and CikA.


Asunto(s)
Proteínas Bacterianas/química , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Cianobacterias/fisiología , Proteínas Quinasas/química , Adenosina Trifosfato/química , Proteínas Bacterianas/ultraestructura , Péptidos y Proteínas de Señalización del Ritmo Circadiano/ultraestructura , Cristalografía por Rayos X , Cianobacterias/enzimología , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Quinasas/ultraestructura , Multimerización de Proteína
15.
Protein Sci ; 15(6): 1248-59, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16731964

RESUMEN

Ubiquitin is an important cellular signal that targets proteins for degradation or regulates their functions. The previously identified BMSC-UbP protein derived from bone marrow stromal cells contains a ubiquitin-associated (UBA) domain at the C terminus that has been implicated in linking cellular processes and the ubiquitin system. Here, we report the solution NMR structure of the UBA domain of human BMSC-UbP protein and its complex with ubiquitin. The structure determination was facilitated by using a solubility-enhancement tag (SET) GB1, immunoglobulin G binding domain 1 of Streptococcal protein G. The results show that BMSC-UbP UBA domain is primarily comprised of three alpha-helices with a hydrophobic patch defined by residues within the C terminus of helix-1, loop-1, and helix-3. The M-G-I motif is similar to the M/L-G-F/Y motifs conserved in most UBA domains. Chemical shift perturbation study revealed that the UBA domain binds with the conserved five-stranded beta-sheet of ubiquitin via hydrophobic interactions with the dissociation constant (KD) of approximately 17 microM. The structural model of BMSC-UbP UBA domain complexed with ubiquitin was constructed by chemical shift mapping combined with the program HADDOCK, which is in agreement with the result from mutagenesis studies. In the complex structure, three residues (Met76, Ile78, and Leu99) of BMSC-UbP UBA form a trident anchoring the domain to the hydrophobic concave surface of ubiquitin defined by residues Leu8, Ile44, His68, and Val70. This complex structure may provide clues for BMSC-UbP functions and structural insights into the UBA domains of other ubiquitin-associated proteins that share high sequence homology with BMSC-UbP UBA domain.


Asunto(s)
Ubiquitina/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1 , Programas Informáticos , Soluciones , Homología Estructural de Proteína , Ubiquitina/química , Ubiquitinas/genética
16.
Protein Sci ; 14(8): 2044-50, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15987890

RESUMEN

The previously identified dendritic cell-derived ubiquitin-like protein (DC-UbP) was implicated in cellular differentiation and apoptosis. Sequence alignment suggested that it contains a ubiquitin-like (UbL) domain in the C terminus. Here, we present the solution NMR structure and backbone dynamics of the UbL domain of DC-UbP. The overall structure of the domain is very similar to that of Ub despite low similarity (<30%) in amino-acid sequence. One distinct feature of the domain structure is its highly positively charged surface that is different from the corresponding surfaces of the well-known UbL modifiers, Ub, NEDD8, and SUMO-1. The key amino-acid residues responsible for guiding polyubiquitinated proteins to proteasome degradation in Ub are not conserved in the UbL domain. This implies that the UbL domain of DC-UbP may have its own specific interaction partners with other yet unknown cellular functions related to the Ub pathway.


Asunto(s)
Modelos Moleculares , Proteínas del Tejido Nervioso/química , Ubiquitinas/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Soluciones , Electricidad Estática , Ubiquitina/química
17.
Science ; 349(6245): 324-8, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26113641

RESUMEN

Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two distinct three-dimensional folds, and its rare transition to an active state provides a time delay that is required to match the timing of the oscillator to that of Earth's rotation. Once KaiB switches folds, it binds phosphorylated KaiC and captures KaiA, which initiates a phase transition of the circadian cycle, and it regulates components of the clock-output pathway, which provides the link that joins the timekeeping and signaling functions of the oscillator.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Synechococcus/fisiología , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Fosforilación , Pliegue de Proteína , Estructura Secundaria de Proteína , Synechococcus/metabolismo
18.
J Mol Biol ; 426(2): 389-402, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24112939

RESUMEN

The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB-KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB-KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA-KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied. We also show that the A-loops of KaiC exist in a dynamic equilibrium between KaiA-accessible exposed and KaiA-inaccessible buried positions. Phosphorylation at the S431 residues of KaiC shift the A-loops toward the buried position, thereby weakening the KaiA-KaiC interaction, which is expected to be an additional mechanism promoting formation of the KaiABC complex. We also show that KaiB and the clock-output protein SasA compete for overlapping binding sites, which include the B-loops on the CI ring of KaiC. KaiA strongly shifts the competition in KaiB's favor. Thus, in addition to stimulating KaiC phosphorylation, it is likely that KaiA plays roles in switching KaiC from phosphorylation to dephosphorylation, as well as regulating clock output.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Fosfotransferasas/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Cianobacterias/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional
19.
Integr Comp Biol ; 53(1): 93-102, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667047

RESUMEN

The most well-understood circadian clock at the level of molecular mechanisms is that of cyanobacteria. This overview is on how solution-state nuclear magnetic resonance (NMR) spectroscopy has contributed to this understanding. By exciting atomic spin-½ nuclei in a strong magnetic field, NMR obtains information on their chemical environments, inter-nuclear distances, orientations, and motions. NMR protein samples are typically aqueous, often at near-physiological pH, ionic strength, and temperature. The level of information obtainable by NMR depends on the quality of the NMR sample, by which we mean the solubility and stability of proteins. Here, we use examples from our laboratory to illustrate the advantages and limitations of the technique.


Asunto(s)
Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Cianobacterias/fisiología , Espectroscopía de Resonancia Magnética/métodos , Cianobacterias/metabolismo
20.
Protein Sci ; 17(10): 1805-14, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18596201

RESUMEN

The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub). To understand the mechanism by which the UBA domains specifically interact with Ub with different affinities, we determined the solution NMR structures of these two UBA domains, cUBA from human c-Cbl and UBAb from Cbl-b. Their structures show that these two UBA domains share the same fold, a compact three-helix bundle, highly resembling the typical UBA fold. Chemical shift perturbation experiments reveal that the helix-1 and loop-1 of UBAb form a predominately hydrophobic surface for Ub binding. By comparing the Ub-interacting surface on UBAb and its counterpart on cUBA, we find that the hydrophobic patch on cUBA is interrupted by a negatively charged residue Glu12. Fluorescence titration data show that the Ala12Glu mutant of UBAb completely loses the ability to bind Ub, whereas the mutation disrupting the dimerization has no significant effect on Ub binding. This study provides structural and biochemical insights into the Ub binding specificities of the Cbl UBA domains, in which the hydrophobic surface distribution on the first helix plays crucial roles in their differential affinities for Ub binding. That is, the amino acid residue diversity in the helix-1 region, but not the dimerization, determines the abilities of various UBA domains binding with Ub.


Asunto(s)
Proteínas Proto-Oncogénicas c-cbl/química , Ubiquitina/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Dimerización , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA