Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(12): E2686-E2695, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507238

RESUMEN

Recent evidence has shown that, in addition to rigidity, the viscous response of the extracellular matrix (ECM) significantly affects the behavior and function of cells. However, the mechanism behind such mechanosensitivity toward viscoelasticity remains unclear. In this study, we systematically examined the dynamics of motor clutches (i.e., focal adhesions) formed between the cell and a viscoelastic substrate using analytical methods and direct Monte Carlo simulation. Interestingly, we observe that, for low ECM rigidity, maximum cell spreading is achieved at an optimal level of viscosity in which the substrate relaxation time falls between the timescale for clutch binding and its characteristic binding lifetime. That is, viscosity serves to stiffen soft substrates on a timescale faster than the clutch off-rate, which enhances cell-ECM adhesion and cell spreading. On the other hand, for substrates that are stiff, our model predicts that viscosity will not influence cell spreading, since the bound clutches are saturated by the elevated stiffness. The model was tested and validated using experimental measurements on three different material systems and explained the different observed effects of viscosity on each substrate. By capturing the mechanism by which substrate viscoelasticity affects cell spreading across a wide range of material parameters, our analytical model provides a useful tool for designing biomaterials that optimize cellular adhesion and mechanosensing.


Asunto(s)
Adhesión Celular/fisiología , Técnicas de Cultivo de Célula/instrumentación , Matriz Extracelular/química , Modelos Biológicos , Células 3T3 , Animales , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Humanos , Hidrogeles , Integrinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Método de Montecarlo , Reología/métodos , Propiedades de Superficie , Viscosidad
2.
Small ; 15(50): e1903180, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31721440

RESUMEN

The migration of cells through constricting spaces or along fibrous tracks in tissues is important for many biological processes and depends on the mechanical properties of a cytoskeleton made up of three different filaments: F-actin, microtubules, and intermediate filaments. The signaling pathways and cytoskeletal structures that control cell motility on 2D are often very different from those that control motility in 3D. Previous studies have shown that intermediate filaments can promote actin-driven protrusions at the cell edge, but have little effect on overall motility of cells on flat surfaces. They are however important for cells to maintain resistance to repeated compressive stresses that are expected to occur in vivo. Using mouse embryonic fibroblasts derived from wild-type and vimentin-null mice, it is found that loss of vimentin increases motility in 3D microchannels even though on flat surfaces it has the opposite effect. Atomic force microscopy and traction force microscopy experiments reveal that vimentin enhances perinuclear cell stiffness while maintaining the same level of acto-myosin contractility in cells. A minimal model in which a perinuclear vimentin cage constricts along with the nucleus during motility through confining spaces, providing mechanical resistance against large strains that could damage the structural integrity of cells, is proposed.


Asunto(s)
Movimiento Celular , Vimentina/deficiencia , Animales , Fenómenos Biomecánicos , Capilares/efectos de los fármacos , Colágeno/farmacología , Citoesqueleto/metabolismo , Hidrogeles/farmacología , Ratones , Miosina Tipo II/metabolismo , Células 3T3 NIH , Vimentina/metabolismo
3.
Biol Cell ; 110(4): 77-90, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29388701

RESUMEN

BACKGROUND INFORMATION: The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies. RESULTS: In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant. CONCLUSIONS: We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity. SIGNIFICANCE: Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.


Asunto(s)
Citoplasma/metabolismo , Desmina/metabolismo , Filamentos Intermedios/metabolismo , Mioblastos/citología , Estrés Mecánico , Animales , Células Cultivadas , Citoesqueleto/metabolismo , Desmina/genética , Elasticidad , Humanos , Ratones , Músculo Esquelético , Mutación , Mioblastos/metabolismo , Reología , Fibras de Estrés
4.
Biophys J ; 110(2): 470-480, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789769

RESUMEN

The cytoskeleton plays a key role in the ability of cells to both resist mechanical stress and generate force, but the precise involvement of intermediate filaments in these processes remains unclear. We focus here on desmin, a type III intermediate filament, which is specifically expressed in muscle cells and serves as a skeletal muscle differentiation marker. By using several complementary experimental techniques, we have investigated the impact of overexpressing desmin and expressing a mutant desmin on the passive and active mechanical properties of C2C12 myoblasts. We first show that the overexpression of wild-type-desmin increases the overall rigidity of the cells, whereas the expression of a mutated E413K desmin does not. This mutation in the desmin gene is one of those leading to desminopathies, a subgroup of myopathies associated with progressive muscular weakness that are characterized by the presence of desmin aggregates and a disorganization of sarcomeres. We show that the expression of this mutant desmin in C2C12 myoblasts induces desmin network disorganization, desmin aggregate formation, and a small decrease in the number and total length of stress fibers. We finally demonstrate that expression of the E413K mutant desmin also alters the traction forces generation of single myoblasts lacking organized sarcomeres.


Asunto(s)
Desmina/metabolismo , Mutación Missense , Mioblastos/metabolismo , Animales , Línea Celular , Desmina/genética , Ratones , Movimiento (Física) , Estructura Terciaria de Proteína , Fibras de Estrés/genética , Fibras de Estrés/metabolismo , Estrés Mecánico
5.
ACS Appl Bio Mater ; 5(2): 552-561, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34995457

RESUMEN

The ability of cells to take and change shape is a fundamental feature underlying development, wound repair, and tissue maintenance. Central to this process is physical and signaling interactions between the three cytoskeletal polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that is essential to the mechanical resilience of cells and regulates cross-talk among the cytoskeleton, but its role in how cells sense and respond to the surrounding extracellular matrix is largely unclear. To investigate vimentin's role in substrate sensing, we designed polyacrylamide hydrogels that mimic the elastic and viscoelastic nature of in vivo tissues. Using wild-type and vimentin-null mouse embryonic fibroblasts, we show that vimentin enhances cell spreading on viscoelastic substrates, even though it has little effect in the limit of purely elastic substrates. Our results provide compelling evidence that vimentin modulates how cells sense and respond to their environment and thus plays a key role in cell mechanosensing.


Asunto(s)
Fibroblastos , Filamentos Intermedios , Vimentina , Citoesqueleto de Actina/metabolismo , Animales , Forma de la Célula , Citoesqueleto/metabolismo , Fibroblastos/citología , Filamentos Intermedios/metabolismo , Ratones , Vimentina/genética
6.
Bio Protoc ; 11(16): e4131, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34541049

RESUMEN

Studies characterizing how cells respond to the mechanical properties of their environment have been enabled by the use of soft elastomers and hydrogels as substrates for cell culture. A limitation of most such substrates is that, although their elastic properties can be accurately controlled, their viscous properties cannot, and cells respond to both elasticity and viscosity in the extracellular material to which they bind. Some approaches to endow soft substrates with viscosity as well as elasticity are based on coupling static and dynamic crosslinks in series within polymer networks or forming gels with a combination of sparse chemical crosslinks and steric entanglements. These materials form viscoelastic fluids that have revealed significant effects of viscous dissipation on cell function; however, they do not completely capture the mechanical features of soft solid tissues. In this report, we describe a method to make viscoelastic solids that more closely mimic some soft tissues using a combination of crosslinked networks and entrapped linear polymers. Both the elastic and viscous moduli of these substrates can be altered separately, and methods to attach cells to either the elastic or the viscous part of the network are described. Graphic abstract: Polyacrylamide gels with independently controlled elasticity and viscosity.

7.
Biomech Model Mechanobiol ; 20(1): 145-154, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32785801

RESUMEN

The stiffness of the cellular environment controls malignant cell phenotype and proliferation. However, the effect of viscous dissipation on these parameters has not yet been investigated, in part due to the lack of in vitro cell substrates reproducing the mechanical properties of normal tissues and tumors. In this article, we use a newly reported viscoelastic polyacrylamide gel cell substrate, and we characterize the impact of viscous dissipation on three malignant cell lines: DU145 and PC3 derived from prostate and LN229 from brain. The spreading, motility and proliferation rates of these cells were analyzed on 1 kPa and 5 kPa elastic and viscoelastic gels. Surprisingly, the effect of substrate viscous dissipation on cell behavior depended on substrate stiffness for the three cell types tested. We conclude that viscoelasticity controls the spreading, proliferation and migration of malignant cells in vitro. These results highlight the critical role of viscous dissipation in the phenotype and proliferation of malignant cells, especially in stiff tumor environments.


Asunto(s)
Elasticidad , Neoplasias/patología , Fenómenos Biomecánicos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Geles , Humanos , Viscosidad
8.
APL Bioeng ; 4(3): 036104, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32666015

RESUMEN

Polyacrylamide hydrogels are commonly used in cell biology, notably to cultivate cells on soft surfaces. Polyacrylamide gels are purely elastic and well adapted to cell culture as they are inert and can be conjugated with adhesion proteins. Here, we report a method to make viscoelastic polyacrylamide gels with mechanical properties more closely resembling biological tissues and suitable for cell culture in vitro. We demonstrate that these gels can be used for traction force microscopy experiments. We also show that multiple cell types respond to the viscoelasticity of their substrate and that viscous dissipation has an influence on cell spreading, contractility, and motility. This new material provides new opportunities for investigating how normal or malignant cells sense and respond to viscous dissipation within the extra-cellular matrix.

9.
Nat Commun ; 9(1): 449, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386514

RESUMEN

The mechanical properties of extracellular matrices can control the function of cells. Studies of cellular responses to biomimetic soft materials have been largely restricted to hydrogels and elastomers that have stiffness values independent of time and extent of deformation, so the substrate stiffness can be unambiguously related to its effect on cells. Real tissues, however, often have loss moduli that are 10 to 20% of their elastic moduli and behave as viscoelastic solids. The response of cells to a time-dependent viscous loss is largely uncharacterized because appropriate viscoelastic materials are lacking for quantitative studies. Here we report the synthesis of soft viscoelastic solids in which the elastic and viscous moduli can be independently tuned to produce gels with viscoelastic properties that closely resemble those of soft tissues. Systematic alteration of the hydrogel viscosity demonstrates the time dependence of cellular mechanosensing and the influence of viscous dissipation on cell phenotype.


Asunto(s)
Resinas Acrílicas/química , Sustancias Viscoelásticas/síntesis química , Células 3T3 , Animales , Diferenciación Celular , Forma de la Célula , Módulo de Elasticidad , Fibroblastos/metabolismo , Geles/síntesis química , Ensayo de Materiales , Ratones , Paxillin/metabolismo
10.
Methods Enzymol ; 568: 35-57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26795466

RESUMEN

Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.


Asunto(s)
Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/metabolismo , Animales , Fenómenos Biomecánicos , Citoesqueleto/metabolismo , Elasticidad , Humanos , Estrés Mecánico , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA