RESUMEN
BACKGROUND: Many European countries experienced outbreaks of mpox in 2022, and there was an mpox outbreak in 2023 in the Democratic Republic of Congo. There were many apparent differences between these outbreaks and previous outbreaks of mpox; the recent outbreaks were observed in men who have sex with men after sexual encounters at common events, whereas earlier outbreaks were observed in a wider population with no identifiable link to sexual contacts. These apparent differences meant that data from previous outbreaks could not reliably be used to parametrise infectious disease models during the 2022 and 2023 mpox outbreaks, and modelling efforts were hampered by uncertainty around key transmission and immunity parameters. METHODS: We developed a stochastic, discrete-time metapopulation model for mpox that allowed for sexual and non-sexual transmission and the implementation of non-pharmaceutical interventions, specifically contact tracing and pre- and post-exposure vaccinations. We calibrated the model to case data from Berlin and used Sobol sensitivity analysis to identify parameters that mpox transmission is especially sensitive to. We also briefly analysed the sensitivity of the effectiveness of non-pharmaceutical interventions to various efficacy parameters. RESULTS: We found that variance in the transmission probabilities due to both sexual and non-sexual transmission had a large effect on mpox transmission in the model, as did the level of immunity to mpox conferred by a previous smallpox vaccination. Furthermore, variance in the number of pre-exposure vaccinations offered was the dominant contributor to variance in mpox dynamics in men who have sex with men. If pre-exposure vaccinations were not available, both the accuracy and timeliness of contact tracing had a large impact on mpox transmission in the model. CONCLUSIONS: Our results are valuable for guiding epidemiological studies for parameter ascertainment and identifying key factors for success of non-pharmaceutical interventions.
Asunto(s)
Mpox , Humanos , Masculino , Mpox/epidemiología , Mpox/transmisión , República Democrática del Congo/epidemiología , Femenino , Brotes de Enfermedades , Epidemias , Conducta Sexual , Trazado de Contacto , Homosexualidad MasculinaRESUMEN
BACKGROUND: One of the primary aims of contact restriction measures during the SARS-CoV-2 pandemic has been to protect people at increased risk of severe disease from the virus. Knowledge about the uptake of contact restriction measures in this group is critical for public health decision-making. We analysed data from the German contact survey COVIMOD to assess differences in contact patterns based on risk status, and compared this to pre-pandemic data to establish whether there was a differential response to contact reduction measures. METHODS: We quantified differences in contact patterns according to risk status by fitting a generalised linear model accounting for within-participant clustering to contact data from 31 COVIMOD survey waves (April 2020-December 2021), and estimated the population-averaged ratio of mean contacts of persons with high risk for a severe COVID-19 outcome due to age or underlying health conditions, to those without. We then compared the results to pre-pandemic data from the contact surveys HaBIDS and POLYMOD. RESULTS: Averaged across all analysed waves, COVIMOD participants reported a mean of 3.21 (95% confidence interval (95%CI) 3.14,3.28) daily contacts (truncated at 100), compared to 18.10 (95%CI 17.12,19.06) in POLYMOD and 28.27 (95%CI 26.49,30.15) in HaBIDS. After adjusting for confounders, COVIMOD participants aged 65 or above had 0.83 times (95%CI 0.79,0.87) the number of contacts as younger age groups. In POLYMOD, this ratio was 0.36 (95%CI 0.30,0.43). There was no clear difference in contact patterns due to increased risk from underlying health conditions in either HaBIDS or COVIMOD. We also found that persons in COVIMOD at high risk due to old age increased their non-household contacts less than those not at such risk after strict restriction measures were lifted. CONCLUSIONS: Over the course of the SARS-CoV-2 pandemic, there was a general reduction in contact numbers in the German population and also a differential response to contact restriction measures based on risk status for severe COVID-19. This differential response needs to be taken into account for parametrisations of mathematical models in a pandemic setting.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Encuestas y Cuestionarios , Salud PúblicaRESUMEN
The parametrisation of infectious disease models is often done based on epidemiological studies that use diagnostic and serology tests to establish disease prevalence or seroprevalence in the population being modelled. During outbreaks of an emerging infectious disease, tests are often used, both for disease control and epidemiological studies, before studies evaluating their accuracy in the population have concluded, with assumptions made about accuracy parameters like sensitivity and specificity. In this simulation study, we simulated such an outbreak, based on the case study of COVID-19, and found that inaccurate parametrisation of infectious disease models due to assumptions about antibody test accuracy in a seroprevalence study can cause modelling results that inform public health decisions to be inaccurate; for example, in our simulation setup, assuming that antibody test specificity was 0.99 instead of 0.90 when it was in fact 0.90 led to an average relative difference of 0.78 in model-projected peak hospitalisations, even when test sensitivity and all other parameters were accurately characterised. We therefore suggest that methods to speed up test evaluation studies are vitally important in the public health response to an emerging outbreak.