Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 146(14)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31320324

RESUMEN

Activation of the ERK signalling pathway is essential for the differentiation of the inner cell mass (ICM) during mouse preimplantation development. We show here that ERK phosphorylation occurs in ICM precursor cells, in differentiated primitive endoderm (PrE) cells as well as in the mature, formative state epiblast (Epi). We further show that DUSP4 and ETV5, factors often involved in negative-feedback loops of the FGF pathway, are differently regulated. Whereas DUSP4 presence clearly depends on ERK phosphorylation in PrE cells, ETV5 localises mainly to Epi cells. Unexpectedly, ETV5 accumulation does not depend on direct activation by ERK but requires NANOG activity. Indeed ETV5, like Fgf4 expression, is not present in Nanog mutant embryos. Our results lead us to propose that in pluripotent early Epi cells, NANOG induces the expression of both Fgf4 and Etv5 to enable the differentiation of neighbouring cells into the PrE while protecting the Epi identity from autocrine signalling.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Sistema de Señalización de MAP Quinasas , Animales , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas Tirosina Fosfatasas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Genes Dev ; 26(13): 1445-58, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22713603

RESUMEN

The transcription factors Nanog and Gata6 are critical to specify the epiblast versus primitive endoderm (PrE) lineages. However, little is known about the mechanisms that regulate the protein stability and activity of these factors in the developing embryo. Here we uncover an early developmental function for the Polycomb group member Bmi1 in supporting PrE lineage formation through Gata6 protein stabilization. We show that Bmi1 is enriched in the extraembryonic (endoderm [XEN] and trophectodermal stem [TS]) compartment and repressed by Nanog in pluripotent embryonic stem (ES) cells. In vivo, Bmi1 overlaps with the nascent Gata6 and Nanog protein from the eight-cell stage onward before it preferentially cosegregates with Gata6 in PrE progenitors. Mechanistically, we demonstrate that Bmi1 interacts with Gata6 in a Ring finger-dependent manner to confer protection against Gata6 ubiquitination and proteasomal degradation. A direct role for Bmi1 in cell fate allocation is established by loss-of-function experiments in chimeric embryoid bodies. We thus propose a novel regulatory pathway by which Bmi1 action on Gata6 stability could alter the balance between Gata6 and Nanog protein levels to introduce a bias toward a PrE identity in a cell-autonomous manner.


Asunto(s)
Endodermo/metabolismo , Factor de Transcripción GATA6/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Linaje de la Célula , Endodermo/citología , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Proteínas Nucleares/genética , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Transcripción Genética
3.
Molecules ; 25(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977422

RESUMEN

Hair loss is becoming increasingly prevalent as dietary and living habits change. The search for natural products to limit hair loss has led to tapping into traditional cosmetic knowledge. We studied three plants of the Polynesian cosmetopoeia, Bidens pilosa, Calophyllum inophyllum and Fagraea berteroana, to determine their ability to promote hair growth. Their chemical content was characterized by liquid chromatography coupled to mass spectrometry (LC-MS). Their proliferative activity on dermal papilla cells (DPCs) was assessed via MTT assay and molecular targets were evaluated by RT-qPCR analysis of seven factors involved in the modulation of the hair cycle, CCND1, LEF1, DKK1, WNT5A PPARD, TGFΒ1, PPARD and RSPO2. Our results show that our extracts significantly increased proliferation of dermal papilla cells. Furthermore, LC-MS/MS analysis revealed a diversity of molecules, flavonoids, iridoids and organic acids, some known for hair-inducing properties. Finally, specific extracts and fractions of all three plants either upregulated CCND1, LEF1 and PPARD involved in stimulating hair follicle proliferation and/or lowered the gene expression levels of hair growth inhibiting factors, DKK1 and TGFB1. Our findings suggest that extracts from B. pilosa, C. inophyllum and F. berteroana are interesting candidates to stimulate hair growth.


Asunto(s)
Dermis/citología , Dermis/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Extractos Vegetales/farmacología , Tracheophyta/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Folículo Piloso/citología , Humanos , Vía de Señalización Wnt/efectos de los fármacos
4.
Development ; 143(7): 1063-74, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27048685

RESUMEN

During mouse preimplantation embryo development, totipotent blastomeres generate the first three cell lineages of the embryo: trophectoderm, epiblast and primitive endoderm. In recent years, studies have shown that this process appears to be regulated by differences in cell-cell interactions, gene expression and the microenvironment of individual cells, rather than the active partitioning of maternal determinants. Precisely how these differences first emerge and how they dictate subsequent molecular and cellular behaviours are key questions in the field. As we review here, recent advances in live imaging, computational modelling and single-cell transcriptome analyses are providing new insights into these questions.


Asunto(s)
Blastocisto/citología , Linaje de la Célula/fisiología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/fisiología , Morfogénesis/fisiología , Animales , Blastocisto/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Animales
5.
Development ; 141(19): 3637-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209243

RESUMEN

During blastocyst formation, inner cell mass (ICM) cells differentiate into either epiblast (Epi) or primitive endoderm (PrE) cells, labeled by Nanog and Gata6, respectively, and organized in a salt-and-pepper pattern. Previous work in the mouse has shown that, in absence of Nanog, all ICM cells adopt a PrE identity. Moreover, the activation or the blockade of the Fgf/RTK pathway biases cell fate specification towards either PrE or Epi, respectively. We show that, in absence of Gata6, all ICM cells adopt an Epi identity. Furthermore, the analysis of Gata6(+/-) embryos reveals a dose-sensitive phenotype, with fewer PrE-specified cells. These results and previous findings have enabled the development of a mathematical model for the dynamics of the regulatory network that controls ICM differentiation into Epi or PrE cells. The model describes the temporal dynamics of Erk signaling and of the concentrations of Nanog, Gata6, secreted Fgf4 and Fgf receptor 2. The model is able to recapitulate most of the cell behaviors observed in different experimental conditions and provides a unifying mechanism for the dynamics of these developmental transitions. The mechanism relies on the co-existence between three stable steady states (tristability), which correspond to ICM, Epi and PrE cells, respectively. Altogether, modeling and experimental results uncover novel features of ICM cell fate specification such as the role of the initial induction of a subset of cells into Epi in the initiation of the salt-and-pepper pattern, or the precocious Epi specification in Gata6(+/-) embryos.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Factor de Transcripción GATA6/metabolismo , Redes Reguladoras de Genes/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Animales , Endodermo/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Hibridación Fluorescente in Situ , Indoles , Ratones , Microscopía Confocal , Proteína Homeótica Nanog , Transducción de Señal/genética , Estadísticas no Paramétricas
6.
Biophys J ; 110(3): 710-722, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26840735

RESUMEN

During development, interactions between transcription factors control the specification of different cell fates. The regulatory networks of genetic interactions often exhibit multiple stable steady states; such multistability provides a common dynamical basis for differentiation. During early murine embryogenesis, cells from the inner cell mass (ICM) can be specified in epiblast (Epi) or primitive endoderm (PrE). Besides the intracellular gene regulatory network, specification is also controlled by intercellular interactions involving Erk signaling through extracellular Fgf4. We previously proposed a model that describes the gene regulatory network and its interaction with Erk signaling in ICM cells. The model displays tristability in a range of Fgf4 concentrations and accounts for the self-organized specification process observed in vivo. Here, we further investigate the origin of tristability in the model and analyze in more detail the specification process by resorting to a simplified two-cell model. We also carry out simulations of a population of 25 cells under various experimental conditions to compare their outcome with that of mutant embryos or of embryos submitted to exogenous treatments that interfere with Fgf signaling. The results are analyzed by means of bifurcation diagrams. Finally, the model predicts that heterogeneities in extracellular Fgf4 concentration play a primary role in the spatial arrangement of the Epi/PrE cells in a salt-and-pepper pattern. If, instead of heterogeneities in extracellular Fgf4 concentration, internal fluctuations in the levels of expression of the transcription factors are considered as a source of randomness, simulations predict the occurrence of unrealistic switches between the Epi and the PrE cell fates, as well as the evolution of some cells toward one of these states without passing through the previous ICM state, in contrast to what is observed in vivo.


Asunto(s)
Blastocisto/citología , Diferenciación Celular , Modelos Teóricos , Animales , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Estratos Germinativos/citología , Sistema de Señalización de MAP Quinasas , Ratones
7.
Cell Mol Life Sci ; 71(17): 3327-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24794628

RESUMEN

During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.


Asunto(s)
Blastocisto/fisiología , Ratones/embriología , Animales , Blastocisto/citología , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Blastómeros/fisiología , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Células Madre Embrionarias/citología , Endodermo/citología , Proteínas Fetales/fisiología , Factores de Transcripción GATA/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Mamíferos/genética , Morfogénesis , Mórula/citología , Mórula/fisiología , Proteína Homeótica Nanog , Especificidad de la Especie
8.
Stem Cells ; 29(10): 1504-16, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21954113

RESUMEN

The maintenance of embryonic stem cells (ESCs) pluripotency depends on key transcription factors, chromatin remodeling proteins, and microRNAs. The roles of RNA-binding proteins are however poorly understood. We report that the cytoplasmic RNA-binding protein Unr prevents the differentiation of ESCs into primitive endoderm (PrE). We show that unr knockout (unr(-/-) ) ESCs spontaneously differentiate into PrE, and that Unr re-expression in unr(-/-) ESCs reverses this phenotype. Nevertheless, unr(-/-) ESCs retain pluripotency, producing differentiated teratomas, and the differentiated unr(-/-) ESCs coexpress the PrE inducer Gata6 and the pluripotency factors Oct4, Nanog, and Sox2. Interestingly, in the differentiated unr(-/-) ESCs, Nanog and Sox2 exhibit a dual nuclear and cytoplasmic localization. This situation, that has never been reported, likely reflects an early differentiation state toward PrE. Finally, we show that Unr destabilizes Gata6 mRNAs and we propose that the post-transcriptional repression of Gata6 expression by Unr contributes to the stabilization of the ESCs pluripotent state.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Proteínas de Unión a Poli(A)/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/metabolismo , Células Nutrientes , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Técnicas de Inactivación de Genes , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas de Unión a Poli(A)/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Teratoma/patología , Transfección
9.
Front Cell Dev Biol ; 10: 1037041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531946

RESUMEN

The mechanical properties of the different germ layers of the early mammalian embryo are likely to be critical for morphogenesis. Cytoskeleton components (actin and myosin, microtubules, intermediate filaments) are major determinants of epithelial plasticity and resilience to stress. Here, we take advantage of a mouse reporter for Keratin 8 to record the pattern of the keratin intermediate filaments network in the first epithelia of the developing mouse embryo. At the blastocyst stage, Keratin 8 is strongly expressed in the trophectoderm, and undetectable in the inner cell mass and its derivatives, the epiblast and primitive endoderm. Visceral endoderm cells that differentiate from the primitive endoderm at the egg cylinder stage display apical Keratin 8 filaments. Upon migration of the Anterior Visceral Endoderm and determination of the anterior-posterior axis, Keratin 8 becomes regionally distributed, with a stronger expression in embryonic, compared to extra-embryonic, visceral endoderm. This pattern emerges concomitantly to a modification of the distribution of Filamentous (F)-actin, from a cortical ring to a dense apical shroud, in extra-embryonic visceral endoderm only. Those regional characteristics are maintained across gastrulation. Interestingly, for each stage and region of the embryo, adjacent germ layers display contrasted levels of keratin filaments, which may play a role in their adaptation to growth and morphological changes.

10.
Nat Commun ; 13(1): 3550, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729116

RESUMEN

The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a "salt and pepper" pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos.


Asunto(s)
Endodermo , Estratos Germinativos , Animales , Blastocisto/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Humanos , Mamíferos/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo
11.
Dev Cell ; 10(5): 615-24, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16678776

RESUMEN

It has been thought that early inner cell mass (ICM) is a homogeneous population and that cell position in the ICM leads to the formation of two lineages, epiblast (EPI) and primitive endoderm (PE), by E4.5. Here, however, we show that the ICM at E3.5 is already heterogeneous. The EPI- and PE-specific transcription factors, Nanog and Gata6, were expressed in the ICM in a random "salt and pepper" pattern, as early as E3.5, in a mutually exclusive manner. Lineage tracing showed predominant lineage restriction of single ICM cells at E3.5 to either lineage. In embryos lacking Grb2 where no PE forms, Gata6 expression was lost and all ICM cells were Nanog positive. We propose a model in which the ICM develops as a mosaic of EPI and PE progenitors at E3.5, dependent on Grb2-Ras-MAP kinase signaling, followed by later segregation of the progenitors into the appropriate cell layers.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Linaje de la Célula , Endodermo/citología , Proteína Adaptadora GRB2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Animales , Blastómeros/metabolismo , Agregación Celular , Tamaño de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodermo/metabolismo , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Proteína Adaptadora GRB2/deficiencia , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Modelos Biológicos , Mórula/citología , Proteína Homeótica Nanog , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
12.
Methods Mol Biol ; 2214: 1-10, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32944899

RESUMEN

A couple of days after fertilization of a mouse oocyte by a sperm, two sequential cell differentiation events segregate pluripotent cells that can be identified by the presence of specific markers. Early mammalian embryos are relatively easy to recover as they are not yet implanted in the uterus matrix. Several decades of experimentation have enabled to find appropriate media to culture them, and therefore provide an excellent way to test different experimental setups such as the use of signaling inhibitors. We provide here a commonly used protocol to culture preimplantation embryos as well as a method to detect pluripotent cells in blastocysts.


Asunto(s)
Blastocisto/citología , Técnicas de Cultivo de Embriones/métodos , Ratones/embriología , Células Madre Pluripotentes/citología , Animales , Embrión de Mamíferos/citología , Técnica del Anticuerpo Fluorescente/métodos , Microscopía Fluorescente/métodos
13.
Cell Stem Cell ; 28(9): 1625-1640.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34004179

RESUMEN

Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.


Asunto(s)
Desarrollo Embrionario , Transcriptoma , Animales , Blastocisto , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Estratos Germinativos , Humanos , Ratones , Transcriptoma/genética
14.
Nat Cell Biol ; 22(4): 389-400, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231305

RESUMEN

In mouse embryonic stem cells (mESCs), chemical blockade of Gsk3α/ß and Mek1/2 (2i) instructs a self-renewing ground state whose endogenous inducers are unknown. Here we show that the axon guidance cue Netrin-1 promotes naive pluripotency by triggering profound signalling, transcriptomic and epigenetic changes in mESCs. Furthermore, we demonstrate that Netrin-1 can substitute for blockade of Gsk3α/ß and Mek1/2 to sustain self-renewal of mESCs in combination with leukaemia inhibitory factor and regulates the formation of the mouse pluripotent blastocyst. Mechanistically, we reveal how Netrin-1 and the balance of its receptors Neo1 and Unc5B co-regulate Wnt and MAPK pathways in both mouse and human ESCs. Netrin-1 induces Fak kinase to inactivate Gsk3α/ß and stabilize ß-catenin while increasing the phosphatase activity of a Ppp2r2c-containing Pp2a complex to reduce Erk1/2 activity. Collectively, this work identifies Netrin-1 as a regulator of pluripotency and reveals that it mediates different effects in mESCs depending on its receptor dosage, opening perspectives for balancing self-renewal and lineage commitment.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Receptores de Netrina/genética , Netrina-1/genética , Receptores de Superficie Celular/genética , Vía de Señalización Wnt/genética , Animales , Línea Celular , Embrión de Mamíferos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones SCID , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Receptores de Superficie Celular/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Dev Biol ; 313(2): 594-602, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18083160

RESUMEN

Mesenchyme to epithelium transitions are crucial to embryonic development. The early mouse embryo offers an excellent model to study epithelium formation as during the first three days of development two epithelia are formed, the trophectoderm (TE) and the primitive endoderm (PrE). We have previously shown that PrE cells are determined within the blastocyst ICM long before epithelium formation. In this work, we isolated Lrp2 as a novel PrE precursor (pre-PrE) marker by using a microarray strategy that combines a transcriptome analysis of three stem cell lines and early embryos. A detailed expression analysis shows that Lrp2 expression is induced in late E3.5 embryos indicating that pre-PrE cells are progressively maturing prior to polarization into an epithelium. Furthermore, the subcellular location of Lrp2, Disabled-2 (Dab2) and Collagen-IV shows that the epithelial structure is acquired in individual cells through successive steps.


Asunto(s)
Blastocisto/metabolismo , Diferenciación Celular , Endodermo/fisiología , Células Epiteliales/fisiología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Biomarcadores , ADN Complementario/genética , Embrión de Mamíferos , Desarrollo Embrionario , Endodermo/citología , Células Epiteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo
16.
Dev Cell ; 3(5): 745-56, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12431380

RESUMEN

The anterior visceral endoderm plays a pivotal role in establishing anterior-posterior polarity of the mouse embryo, but the molecular nature of the signals required remains to be determined. Here, we demonstrate that Cerberus-like(-/-);Lefty1(-/-) compound mutants can develop a primitive streak ectopically in the embryo. This defect is not rescued in chimeras containing wild-type embryonic, and Cerberus-like(-/-);Lefty1(-/-) extraembryonic, cells but is rescued in Cerberus-like(-/-); Lefty1(-/-) embryos after removal of one copy of the Nodal gene. Our findings provide support for a model whereby Cerberus-like and Lefty1 in the anterior visceral endoderm restrict primitive streak formation to the posterior end of mouse embryos by antagonizing Nodal signaling. Both antagonists are also required for proper patterning of the primitive streak.


Asunto(s)
Tipificación del Cuerpo/fisiología , Endodermo/fisiología , Gástrula/fisiología , Proteínas/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Citocinas , Desarrollo Embrionario y Fetal , Factores de Determinación Derecha-Izquierda , Ratones , Mutagénesis , Proteína Nodal , Fenotipo , Proteínas/genética , Factor de Crecimiento Transformador beta/genética
17.
Int J Dev Biol ; 63(3-4-5): 131-142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058292

RESUMEN

Early embryonic development, from the zygote to the blastocyst, is a paradigm of a dynamic, self-organised process. It involves gene expression, mechanical interactions between cells, cell division and inter- and intracellular signalling. Imaging and transcriptomic data have significantly improved our understanding of early embryogenesis in mammals. However, they also reveal a great level of complexity. How the genetic, mechanical, and regulatory processes interact to ensure reproducible development is thus much investigated by computational modelling, which allows a dissection of the mechanisms controlling cell fate decisions. In this review, we discuss the main types of modelling approaches that have been used to investigate the dynamics of preimplantation mammalian development. We also discuss the insights provided by modelling into our understanding of the specification processes leading to the three types of cells in the embryo 4.5 days after fertilization: the trophectoderm, the epiblast and the primitive endoderm.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Biológicos , Animales , Blastocisto/citología , Diferenciación Celular , Linaje de la Célula , Biología Computacional , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Endodermo/citología , Ratones , Transducción de Señal , Cigoto/metabolismo
18.
Med Sci (Paris) ; 24(12): 1043-8, 2008 Dec.
Artículo en Francés | MEDLINE | ID: mdl-19116112

RESUMEN

In mammals, embryonic and extraembryonic cell lineages segregate during the first steps of cell differentiation in the preimplantation embryo. Indeed, mammal embryos contain very low energy stocks and thus get ready for implantation very early to be able to absorb nutrients from the mother, first through the yolk sac and then through the placenta. These first steps involve classical genetic and morphogenetic processes as well as specific mechanisms of early embryo development such as epigenetic reprogramming and maintenance of pluripotent cells. Embryo analysis led to the isolation of embryonic stem (ES) cells, granted by the 2007 Nobel prize of Medicine (to M. Evans, M. Capecchi and O. Smithies) and which offer strong hopes for cell therapy.


Asunto(s)
Desarrollo Embrionario , Células Madre Embrionarias/citología , Mamíferos/genética , Animales , Blastocisto/citología , Diferenciación Celular/fisiología , Linaje de la Célula , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Ratones , Embarazo , Trofoblastos/citología , Cigoto/citología
19.
Curr Top Dev Biol ; 128: 81-104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29477172

RESUMEN

At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Endodermo/citología , Epitelio/embriología , Animales , Blastocisto/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos
20.
NPJ Syst Biol Appl ; 3: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649443

RESUMEN

Embryonic development is a self-organised process during which cells divide, interact, change fate according to a complex gene regulatory network and organise themselves in a three-dimensional space. Here, we model this complex dynamic phenomenon in the context of the acquisition of epiblast and primitive endoderm identities within the inner cell mass of the preimplantation embryo in the mouse. The multiscale model describes cell division and interactions between cells, as well as biochemical reactions inside each individual cell and in the extracellular matrix. The computational results first confirm that the previously proposed mechanism by which extra-cellular signalling allows cells to select the appropriate fate in a tristable regulatory network is robust when considering a realistic framework involving cell division and three-dimensional interactions. The simulations recapitulate a variety of in vivo observations on wild-type and mutant embryos and suggest that the gene regulatory network confers differential plasticity to the different cell fates. A detailed analysis of the specification process emphasizes that developmental transitions and the salt-and-pepper patterning of epiblast and primitive endoderm cells from a homogenous population of inner cell mass cells arise from the interplay between the internal gene regulatory network and extracellular signalling by Fgf4. Importantly, noise is necessary to create some initial heterogeneity in the specification process. The simulations suggest that initial cell-to-cell differences originating from slight inhomogeneities in extracellular Fgf4 signalling, in possible combination with slightly different concentrations of the key transcription factors between daughter cells, are able to break the original symmetry and are amplified in a flexible and self-regulated manner until the blastocyst stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA