Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
New Phytol ; 242(1): 192-210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332398

RESUMEN

Eukaryotes have evolved sophisticated post-translational modifications to regulate protein function and numerous biological processes, including ubiquitination controlled by the coordinated action of ubiquitin-conjugating enzymes and deubiquitinating enzymes (Dubs). However, the function of deubiquitination in pathogenic fungi is largely unknown. Here, the distribution of Dubs in the fungal kingdom was surveyed and their functions were systematically characterized using the phytopathogen Fusarium graminearum as the model species, which causes devastating diseases of all cereal species world-wide. Our findings demonstrate that Dubs are critical for fungal development and virulence, especially the ubiquitin-specific protease 15 (Ubp15). Global ubiquitome analysis and subsequent experiments identified three important substrates of Ubp15, including the autophagy-related protein Atg8, the mitogen-activated protein kinase Gpmk1, and the mycotoxin deoxynivalenol (DON) biosynthetic protein Tri4. Ubp15 regulates the deubiquitination of the Atg8, thereby impacting its subcellular localization and the autophagy process. Moreover, Ubp15 also modulates the deubiquitination of Gpmk1 and Tri4. This modulation subsequently influences their protein stabilities and further affects the formation of penetration structures and the biosynthetic process of DON, respectively. Collectively, our findings reveal a previously unknown regulatory pathway of a deubiquitinating enzyme for fungal virulence and highlight the potential of Ubp15 as a target for combating fungal diseases.


Asunto(s)
Fusarium , Micotoxinas , Virulencia , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Enfermedades de las Plantas/microbiología
2.
Environ Microbiol ; 22(12): 5109-5124, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32537857

RESUMEN

Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Pared Celular/metabolismo , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Fusarium/metabolismo , Enfermedades de las Plantas/microbiología , Unión Proteica , Transducción de Señal/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Tricotecenos/metabolismo , Virulencia/genética , Proteínas ras/metabolismo
3.
Fungal Genet Biol ; 144: 103449, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890707

RESUMEN

Subtilases represent the second largest subfamily of serine proteases, and are important for various biological processes. However, the biological function of subtilases has not been systematically characterized in plant pathogens. In present study, 32 subtilases were identified in the genome of wheat scab fungus Fusarium graminearum, a devastating cereal plant pathogen. Deletion mutants of each subtilase were obtained and functionally characterized. Among them, the deletion of FgPrb1 resulted in greatly reduced virulence of F. graminearum. The regulatory mechanisms of FgPrb1 in virulence were investigated in details. Our results showed that the loss of FgPrb1 led to defects in deoxynivalenol (DON) production, responses to environmental stimuli, and lipid metabolism. Additionally, we found that FgPrb1 was involved in autophagy regulation. Taken together, the systematic functional characterization of subtilases showed that the FgPrb1 of F. graminearum is critical for plant infection by regulating multiple different cellular processes.


Asunto(s)
Fusarium/genética , Péptido Hidrolasas/genética , Subtilisinas/genética , Fusarium/enzimología , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Triticum/crecimiento & desarrollo , Triticum/microbiología , Virulencia/genética
4.
Curr Genet ; 65(4): 1041-1055, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30927052

RESUMEN

Ubiquitinated biosynthetic and surface proteins destined for degradation are sorted into the lysosome/vacuole via the multivesicular body sorting pathway, which depends on the function of ESCRT machinery. Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases for wheat and barley worldwide. To better understand the role of ESCRT machinery in F. graminearum, we investigated the function of ESCRT-III accessory proteins FgVps60, FgDid2 and FgIst1 in this study. FgVps60-GFP, FgDid2-GFP and FgIst1-GFP are localized to punctate structures adjacent to the vacuolar membrane except for FgIst1-GFP that is also found in the nucleus. Then, the gene deletion mutants ΔFgvps60, ΔFgdid2 and ΔFgist1 displayed defective growth to a different extent. ΔFgvps60 and ΔFgdid2 but not ΔFgist1 also showed significant reduction in hydrophobicity on cell surface, conidiation, perithecia production and virulence. Interestingly, ΔFgist1 mutant produced a significantly higher level of DON while showing a minor reduction in pathogenicity. Microscopic analyses revealed that FgVps60 but not FgIst1 and FgDid2 is necessary for endocytosis. Moreover, spontaneous mutations were identified in the ΔFgvps60 mutant that partially rescued its defects in growth and conidiation. Taken together, we conclude that ESCRT-III accessory proteins play critical roles in growth, reproduction and plant infection in F. graminearum.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas Fúngicas/genética , Fusarium/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/patogenicidad , Triticum/genética , Triticum/microbiología
5.
PLoS Genet ; 11(12): e1005704, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658729

RESUMEN

The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.


Asunto(s)
Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/genética , Transporte de Proteínas/genética , Secuencia de Aminoácidos , Autofagia/genética , Glucógeno/metabolismo , Interacciones Huésped-Patógeno/genética , Gotas Lipídicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Vacuolas/genética , Vacuolas/microbiología , Red trans-Golgi/genética
6.
Environ Microbiol ; 18(11): 3742-3757, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26971885

RESUMEN

Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidad , Hifa/crecimiento & desarrollo , Pared Celular/genética , Pared Celular/metabolismo , Grano Comestible/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Presión Osmótica , Transporte de Proteínas , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Virulencia
7.
Fungal Genet Biol ; 94: 79-87, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27387218

RESUMEN

Septins are GTP-binding proteins that regulate cell polarity, cytokinesis and cell morphogenesis. Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases worldwide. In this study, we have functionally characterized the core septins, Cdc3, Cdc10, Cdc11 and Cdc12 in F. graminearum. The loss of FgCdc3, FgCdc11, FgCdc12, but not FgCdc10, mutants showed significant reduction in growth, conidiation and virulence. Microscopic analyses revealed that all of them were involved in septum formation and nuclear division. Moreover, disruption of septin genes resulted in morphological defects in ascospores and conidia. Interestingly, conidia produced by ΔFgcdc3, ΔFgcdc11 and ΔFgcdc12 mutants exhibited deformation with interconnecting conidia in contrast to their parent wild-type strain PH-1 and the ΔFgcdc10 mutant that produced normal conidia. Using yeast two-hybrid assays, we determined the interactions among FgCdc3, FgCdc10, FgCdc11 and FgCdc12. Taken together, our results indicate that septins play important roles in the nuclear division, morphogenesis and pathogenicity in F. graminearum.


Asunto(s)
División del Núcleo Celular , Fusarium/fisiología , Septinas/fisiología , Fusarium/genética , Fusarium/patogenicidad , Eliminación de Gen , Genes Fúngicos , Morfogénesis , Enfermedades de las Plantas/microbiología , Septinas/genética , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
8.
New Phytol ; 210(4): 1327-43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26875543

RESUMEN

In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.


Asunto(s)
Fusarium/genética , Red trans-Golgi/metabolismo , Endosomas/metabolismo , Fusarium/citología , Fusarium/metabolismo , Fusarium/patogenicidad , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Virulencia
9.
mBio ; 14(4): e0149923, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37504517

RESUMEN

The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum. Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δubp14, protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.


Asunto(s)
Fusarium , Fusarium/metabolismo , Virulencia , Ubiquitinación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo
10.
Mol Plant Pathol ; 24(9): 1139-1153, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37278525

RESUMEN

Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes that control various important cellular processes such as signal transduction and development. However, the role of the STRIPAK complex in pathogenic fungi remains elusive. In this study, the components and function of the STRIPAK complex were investigated in Fusarium graminearum, an important plant-pathogenic fungus. The results obtained from bioinformatic analyses and the protein-protein interactome suggested that the fungal STRIPAK complex consisted of six proteins: Ham2, Ham3, Ham4, PP2Aa, Ppg1, and Mob3. Deletion mutations of individual components of the STRIPAK complex were created, and observed to cause a significant reduction in fungal vegetative growth and sexual development, and dramatically attenuae virulence, excluding the essential gene PP2Aa. Further results revealed that the STRIPAK complex interacted with the mitogen-activated protein kinase Mgv1, a key component in the cell wall integrity pathway, subsequently regulating the phosphorylation level and nuclear accumulation of Mgv1 to control the fungal stress response and virulence. Our results also suggested that the STRIPAK complex was interconnected with the target of rapamycin pathway through Tap42-PP2A cascade. Taken together, our findings revealed that the STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of F. graminearum and highlighted the importance of the STRIPAK complex in fungal virulence.


Asunto(s)
Fusarium , Transducción de Señal , Virulencia , Transducción de Señal/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/metabolismo
11.
Front Microbiol ; 14: 1179676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168110

RESUMEN

The COP9 signalosome (Csn) complex is an evolutionarily conserved complex that regulates various important cellular processes. However, the function of the Csn complex in pathogenic fungi remains elusive. Here, the distribution of Csn subunits in the fungal kingdom was surveyed, and their biological functions were systematically characterized in the fungal pathogen Fusarium graminearum, which is among the top 10 plant fungal pathogens. The results obtained from bioinformatic analyses suggested that the F. graminearum Csn complex consisted of seven subunits (Csn1-Csn7) and that Csn5 was the most conserved subunit across the fungi kingdom. Yeast two-hybrid assays demonstrated that the seven Csn subunits formed a complex in F. graminearum. The Csn complex was localized to both the nucleus and cytoplasm and necessary for hyphal growth, asexual and sexual development and stress response. Transcriptome profiling revealed that the Csn complex regulated the transcription abundance of TRI genes necessary for mycotoxin deoxynivalenol (DON) biosynthesis, subsequently regulating DON production to control fungal virulence. Collectively, the roles of the Csn complex in F. graminearum were comprehensively analyzed, providing new insights into the functions of the Csn complex in fungal virulence and suggesting that the complex may be a potential target for combating fungal diseases.

12.
J Chem Theory Comput ; 18(7): 4366-4372, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35584357

RESUMEN

A Smolyak algorithm adapted to system-bath separation is proposed for rigorous quantum simulations. This technique combines a sparse grid method with the system-bath concept in a specific configuration without limitations on the form of the Hamiltonian, thus achieving a highly efficient convergence of the excitation transitions for the "system" part. Our approach provides a general way to overcome the perennial convergence problem for the standard Smolyak algorithm and enables the simulation of floppy molecules with more than a hundred degrees of freedom. The efficiency of the present method is illustrated on the simulation of H2 caged in an sII clathrate hydrate including two kinds of cage modes. The transition energies are converged by increasing the number of normal modes of water molecules. Our results confirm the triplet splittings of both translational and rotational (j = 1) transitions of the H2 molecule. Furthermore, they show a slight increase of the translational transitions with respect to the ones in a rigid cage.

13.
Mol Plant Pathol ; 21(2): 173-187, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31693278

RESUMEN

Deoxynivalenol (DON) is an important trichothecene mycotoxin produced by the cereal pathogen Fusarium graminearum. DON is synthesized in organized endoplasmic reticulum structures called toxisomes. However, the mechanism for toxisome formation and the components of toxisomes are not yet fully understood. In a previous study, we found that myosin I (FgMyo1)-actin cytoskeleton participated in toxisome formation. In the current study, we identified two new components of toxisomes, the actin capping proteins (CAPs) FgCapA and FgCapB. These two CAPs form a heterodimer in F. graminearum, and physically interact with FgMyo1 and Tri1. The deletion mutants ΔFgcapA and ΔFgcapB and the double deletion mutant ΔΔFgcapA/B dramatically reduced hyphal growth, asexual and sexual reproduction and endocytosis. More importantly, the deletion mutants markedly disrupted toxisome formation and DON production, and attenuated virulence in planta. Collectively, these results suggest that the actin CAPs are associated with toxisome formation and contribute to the virulence and development of F. graminearum.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidad , Citoesqueleto de Actina/metabolismo , Endocitosis/fisiología , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , Virulencia
14.
Nat Commun ; 11(1): 346, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937790

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Front Microbiol ; 10: 180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809208

RESUMEN

Multivesicular bodies (MVBs) are critical intermediates in the trafficking of ubiquitinated endocytosed surface proteins to the lysosome/vacuole for destruction. Recognizing and packaging ubiquitin modified cargoes to the MVB pathway require ESCRT (Endosomal sorting complexes required for transport) machinery, which consists of four core subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. Our previous results showed that ESCRT-0 is essential for fungal development and pathogenicity in Fusarium graminearum. We then, in this study, systemically studied the protein-protein interactions within F. graminearum ESCRT-I, -II or -III complex, as well as between ESCRT-0 and ESCRT-I, ESCRT-I and ESCRT-II, and ESCRT-II and ESCRT-III complexes and found that loss of any ESCRT component resulted in abnormal function in endocytosis. In addition, ESCRT deletion mutants displayed severe defects in growth, deoxynivalenol (DON) production, virulence, sexual, and asexual reproduction. Importantly genetic complementation with corresponding ESCRT genes fully rescued all these defective phenotypes, indicating the essential role of ESCRT machinery in fungal development and plant infection in F. graminearum. Taken together, the protein-protein interactome and biological functions of the ESCRT machinery is first profoundly characterized in F. graminearum, providing a foundation for further exploration of ESCRT machinery in filamentous fungi.

16.
Nat Commun ; 10(1): 4352, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554810

RESUMEN

Circadian clock mechanisms have been extensively investigated but the main rate-limiting step that determines circadian period remains unclear. Formation of a stable complex between clock proteins and CK1 is a conserved feature in eukaryotic circadian mechanisms. Here we show that the FRQ-CK1 interaction, but not FRQ stability, correlates with circadian period in Neurospora circadian clock mutants. Mutations that specifically affect the FRQ-CK1 interaction lead to severe alterations in circadian period. The FRQ-CK1 interaction has two roles in the circadian negative feedback loop. First, it determines the FRQ phosphorylation profile, which regulates FRQ stability and also feeds back to either promote or reduce the interaction itself. Second, it determines the efficiency of circadian negative feedback process by mediating FRQ-dependent WC phosphorylation. Our conclusions are further supported by mathematical modeling and in silico experiments. Together, these results suggest that the FRQ-CK1 interaction is a major rate-limiting step in circadian period determination.


Asunto(s)
Quinasa de la Caseína I/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Neurospora crassa/genética , Quinasa de la Caseína I/metabolismo , Relojes Circadianos/genética , Retroalimentación Fisiológica , Proteínas Fúngicas/metabolismo , Mutación , Neurospora crassa/metabolismo , Fosforilación , Unión Proteica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA