Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(22): 39361-39373, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298890

RESUMEN

A wide field of view (FOV) is required to improve the user experience in mobile applications of light-field displays (LFDs). However, the FOV of liquid-crystal-display-based LFDs is narrow owing to the thick gap between the light-direction-control element and the pixel plane. The thin-encapsulated self-emissive displays, such as organic light-emitting diodes (OLEDs), are beneficial for widening the FOV without losing spatial resolution. With OLEDs, a 72-degree FOV, 12-view, 166-ppi LFD with smooth motion parallax is demonstrated. A moiré-free parallax barrier of arctan (1/4) slant angle is used to reconcile the triangular sub-pixel pattern of OLEDs, and further doubles the spatial resolution by aligning sub-pixels into a single column, instead of the conventional two columns. The effects of crosstalk due to the wide slits on the three-dimensional image quality are analyzed.

2.
Soft Matter ; 16(31): 7256-7269, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32632433

RESUMEN

We report observations of photopolymerization driven phase-separation in a mixture of a photo-reactive monomer and inorganic nanoparticles. The mixture is irradiated with visible light possessing a periodic intensity profile that elicits photopolymerization along the depth of the mixture, establishing a competition between photo-crosslinking and thermodynamically favorable phase-separating behavior inherent to the system. In situ Raman spectroscopy was used to monitor the polymerization reaction and morphology evolution, and reveals a key correlation between irradiation intensity and composite morphology extending the entire depth of the mixture, i.e. unhindered phase-separation at low irradiation intensity and arrested phase-separation at high irradiation intensity. 3D Raman volume mapping and energy dispersive X-ray mapping confirm that the intensity-dependent irradiation process dictates the extent of phase separation, enabling single-parameter control over phase evolution and subsequent composite morphology. These observations can potentially enable a single-step route to develop polymer-inorganic composite materials with tunable morphologies.

3.
Opt Express ; 24(22): A1419-A1430, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828526

RESUMEN

Silicon solar cells are the most widely deployed modules owing to their low-cost manufacture, large market, and suitable efficiencies for residential and commercial use. Methods to increase their solar energy collection must be easily integrated into module fabrication. We perform a theoretical and experimental study on the light collection properties of an encapsulant that incorporates a periodic array of air prisms, which overlay the metallic front contacts of silicon solar cells. We show that the light collection efficiency induced by the encapsulant depends on both the shape of the prisms and angle of incidence of incoming light. We elucidate the changes in collection efficiency in terms of the ray paths and reflection mechanisms in the encapsulant. We fabricated the encapsulant from a commercial silicone and studied the change in the external quantum efficiency (EQE) on an encapsulated, standard silicon solar cell. We observe efficiency enhancements, as compared to a uniform encapsulant, over the visible to near infrared region for a range of incident angles. This work demonstrates exactly how a periodic air prism architecture increases light collection, and how it may be designed to maximize light collection over the widest range of incident angles.

4.
Opt Express ; 22(4): 4751-67, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663794

RESUMEN

Designated eye position (DEP) and viewing zone (VZ) are important optical parameters for designing a two-view autostereoscopic display. Although much research has been done to date, little empirical evidence has been found to establish a direct relationship between design and measurement. More rigorous studies and verifications to investigate DEP and to ascertain the VZ criterion will be valuable. We propose evaluation metrics based on equivalent luminance (EL) and binocular luminance (BL) to figure out DEP and VZ for a two-view autostereoscopic display. Simulation and experimental results prove that our proposed evaluation metrics can be used to find the DEP and VZ accurately.

5.
ACS Omega ; 6(26): 17095-17102, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34250366

RESUMEN

Calcium batteries are promising alternatives to lithium batteries owing to their high energy density, comparable reduction potential, and mineral abundance. However, to meet practical demands in high-performance applications, suitable electrolytes must be developed. Here, we report the synthesis and characterization of polymer gel electrolytes for calcium-ion conduction prepared by the photo-cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in the presence of solutions of calcium salts in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) solvents. The results show room-temperature conductivity between 10-5 and 10-4 S/cm, electrochemical stability windows of ∼3.8 V, full dissociation of the salt, and minimal coordination with the PEGDA backbone. Cycling in symmetric Ca metal cells proceeds but with increasing overpotentials, which can be attributed to interfacial impedance between the electrolyte and calcium surface, which inhibits charge transfer. Calcium may still be plated and stripped yielding high-purity deposits and no indication of significant electrolyte breakdown, indicating that high overpotentials are associated with an electrically insulating, yet ion-permeable solid electrolyte interface (SEI). This work provides a contribution to the study and understanding of polymer gel materials toward their improvement and application as electrolytes for calcium batteries.

6.
ACS Appl Polym Mater ; 3(9): 4661-4672, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34541544

RESUMEN

Fabrication of superhydrophobic materials using incumbent techniques involves several processing steps and is therefore either quite complex, not scalable, or often both. Here, the development of superhydrophobic surface-patterned polymer-TiO2 composite materials using a simple, single-step photopolymerization-based approach is reported. The synergistic combination of concurrent, periodic bump-like pattern formation created using irradiation through a photomask and photopolymerization-induced nanoparticle (NP) phase separation enables the development of surface textures with dual-scale roughness (micrometer-sized bumps and NPs) that demonstrate high water contact angles, low roll-off angles, and desirable postprocessability such as flexibility, peel-and-stick capability, and self-cleaning capability. The effect of nanoparticle concentration on surface porosity and consequently nonwetting properties is discussed. Large-area fabrication over an area of 20 cm2, which is important for practical applications, is also demonstrated. This work demonstrates the capability of polymerizable systems to aid in the organization of functional polymer-nanoparticle surface structures.

7.
ACS Appl Mater Interfaces ; 11(50): 47422-47427, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31755693

RESUMEN

Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process.

8.
Adv Mater ; 30(8)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29271510

RESUMEN

The fabrication of a new type of solar cell encapsulation architecture comprising a periodic array of step-index waveguides is reported. The materials are fabricated through patterning with light in a photoreactive binary blend of crosslinking acrylate and urethane, wherein phase separation induces the spontaneous, directed formation of broadband, cylindrical waveguides. This microstructured material efficiently collects and transmits optical energy over a wide range of entry angles. Silicon solar cells comprising this encapsulation architecture show greater total external quantum efficiencies and enhanced wide-angle light capture and conversion. This is a rapid, straightforward, and scalable approach to process light-collecting structures, whereby significant increases in cell performance may be achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA