Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4658-4671, 2024 Sep.
Artículo en Zh | MEDLINE | ID: mdl-39307804

RESUMEN

The preparation processes of iron-based organic framework(FeMOF) MIL-100(Fe) and MIL-101(Fe) with two different ligands were optimized and screened, and the optimized FeMOF was loaded with piperlongumine(PL) to enhance the biocompatibility and antitumor efficacy of PL. The MIL-100(Fe) and MIL-101(Fe) were prepared by solvent thermal method using the optimized reaction solvent. With particle size, polymer dispersity index(PDI), and yield as indexes, the optimal preparation processes of the two were obtained by using the definitive screening design(DSD) experiment and establishing a mathematical model, combined with the Derringer expectation function. After characterization, the best FeMOF was selected to load PL by solvent diffusion method, and the process of loading PL was optimized by a single factor combined with an orthogonal experiment. The CCK-8 method was used to preliminarily evaluate the biological safety of blank FeMOF and the antitumor effect of the drug-loaded nano preparations. The experimental results showed that the optimal preparation process of MIL-100(Fe) was as follows: temperature at 127.8 ℃, reaction time of 14.796 h, total solvent volume of 11.157 mL, and feed ratio of 1.365. The particle size of obtained MIL-100(Fe) nanoparticles was(108.84±2.79)nm; PDI was 0.100±0.023, and yield was 36.93%±0.79%. The optimal preparation process of MIL-101(Fe) was as follows: temperature at 128.1 ℃, reaction time of 6 h, total solvent volume of 10.005 mL, and feed ratio of 0.500. The particle size of obtained MIL-101(Fe) nanoparticles was(254.04±22.03)nm; PDI was 0.289±0.052, and yield was 44.95%±0.45%. The optimal loading process of MIL-100(Fe) loaded with PL was as follows: the feed ratio of MIL-100(Fe) to PL was 1∶2; the concentration of PL solution was 7 mg·mL~(-1), and the ratio of DMF to water was 1∶5. The drug loading capacity of obtained MIL-100(Fe)/PL nanoparticles was 68.86%±1.82%; MIL-100(Fe) was nontoxic to HepG2 cells at a dose of 0-120 µg·mL~(-1), and the half-inhibitory concentration(IC_(50)) of free PL for 24 h treatment of HepG2 cells was 1.542 µg·mL~(-1). The IC_(50) value of MIL-100(Fe)/PL was 1.092 µg·mL~(-1)(measured by PL). In this study, the optimal synthesis process of MIL-100(Fe) and MIL-101(Fe) was optimized by innovatively using the DSD to construct a mathematical model combined with the Derringer expectation function. The optimized preparation process of MIL-100(Fe) nanoparticles and the PL loading process were stable and feasible. The size and shape of MIL-100(Fe) particles were uniform, and the crystal shape was good, with a high drug loading capacity, which could significantly enhance the antitumor effect of PL. This study provides a new method for the optimization of the nano preparation process and lays a foundation for the further development and research of antitumor nano preparations of PL.


Asunto(s)
Antineoplásicos , Dioxolanos , Hierro , Estructuras Metalorgánicas , Humanos , Dioxolanos/química , Estructuras Metalorgánicas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química , Línea Celular Tumoral , Tamaño de la Partícula , Nanopartículas/química , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Proliferación Celular/efectos de los fármacos , Piperidonas
2.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5790-5797, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114174

RESUMEN

Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-ß-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.


Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Ratas , Animales , Medicamentos Herbarios Chinos/farmacología , Scutellaria baicalensis/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
3.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3701-3708, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850826

RESUMEN

The production of solid preparations is a multi-unit and multi-step system and is a whole process chain. Its quality is affected by many factors such as material properties and process parameters. As an important analysis tool, multivariate models play an important role in pharmaceutical monitoring. Besides, multivariate models can comprehensively understand the multi-factor relationship between material properties, process parameters, and quality attributes of products, thereby promoting the whole process optimization and controlling the drug production quality. This paper summarized the application of commonly used multivariate models in the process of solid preparations, which provides a certain reference for the process modeling of Chinese medicinal preparations.


Asunto(s)
Tecnología Farmacéutica , Preparaciones Farmacéuticas , Control de Calidad
4.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073180

RESUMEN

In this work, microwave-assisted ionic liquids treatment, followed by hydro-distillation (MILT-HD), as an efficient extraction technology, was used to extract essential oil. The purpose for this was to use multivariate analysis (MVA) models to investigate the effects of potential critical process parameters on the extraction efficiency of essential oil, and explore the mechanism of ionic liquids (ILs). According to the design of experiment (DoE), under optimal process conditions, the extraction efficiency of essential oil was dramatically enhanced, and had low energy demands. Since little is known regarding those mechanisms, according to the non-covalent interaction analysis, the underlying mechanism for ILs improving extraction efficiency was explored based on the density functional theory (DFT). The results showed that ILs could form intense non-covalent bond interaction with cellulose. It helped destroy the network hydrogen bond structure of cellulose in plant cells and caused the essential oils in the cells to be more easily exposed to the extraction solution, thereby accelerating extraction efficiency. Based on this work, it is conducive to understand the MILT-HD process better and gain knowledge of the mechanism of ILs.


Asunto(s)
Foeniculum/química , Líquidos Iónicos/química , Aceites Volátiles/análisis , Dióxido de Carbono/química , Celulosa/química , Técnicas de Química Analítica , Destilación/métodos , Cromatografía de Gases y Espectrometría de Masas , Enlace de Hidrógeno , Imidazoles/química , Cinética , Microscopía Electrónica de Rastreo , Microondas , Análisis Multivariante , Aceites Volátiles/aislamiento & purificación , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier
5.
Molecules ; 24(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925694

RESUMEN

A MIL series metal‒organic framework (MOF), MIL-100(Fe), was successfully synthesized at the nanoscale and fully characterized by TEM, TGA, XRD, FTIR, DLS, and BET. A toxicological assessment was performed using two different cell lines: human normal liver cells (HL-7702) and hepatocellular carcinoma (HepG2). In vitro cytotoxicity of MIL-100(Fe) was evaluated by the MTT assay, LDH releasing rate assay, DAPI staining, and annexin V/PI double staining assay. The safe dose of MIL-100(Fe) was 80 µg/mL. It exhibited good biocompatibility, low cytotoxicity, and high cell survival rate (HL-7702 cells' viability >85.97%, HepG2 cells' viability >91.20%). Therefore, MIL-100(Fe) has a potential application as a drug carrier.


Asunto(s)
Hierro/toxicidad , Estructuras Metalorgánicas/toxicidad , Pruebas de Toxicidad , Apoptosis/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Hierro/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/ultraestructura , Modelos Moleculares , Tamaño de la Partícula , Porosidad
6.
Molecules ; 24(14)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337148

RESUMEN

Houpo Wenzhong Decoction (HWD) as a classical prescription has been widely used for hundreds of years. However, the quality of HWDs is difficult to control because of its herb materials from different regions. It is a new idea to use HPLC fingerprints, LTQ-ESI-Orbitrap-MS, and network pharmacology in combination to screen common components (CCs) as potential quality control indicators. In this paper, the fingerprints of HWDs were established, which were used to determine HWDs compounded from different sources of traditional Chinese medicines (TCMs). Through the similarity analysis, 45 CCs were selected. UHPLC-LTQ-ESI-Orbitrap-MS was used to carry out the chemical composition analysis of HWD. Seventy-three chemical constituents were distinguished, and 30 CCs were identified. Through network pharmacology, networks of candidate CCs, diseases, and candidate targets were constructed. Finally, four CCs were screened as potential active ingredient markers of HWD, and a method for content determination of these four components was established. A rapid, reasonable, and effective method for quality evaluation and control of HWDs was established. It provides a reference for the further development and research of HWDs and a new way of thinking for the research of other Chinese medicine prescriptions.


Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masas , Espectrometría de Masa por Ionización de Electrospray , Medicamentos Herbarios Chinos/análisis , Estructura Molecular , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Estructura-Actividad
7.
Molecules ; 24(18)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527488

RESUMEN

Oridonin (ORI) is a natural active ingredient with strong anticancer activity. But its clinical use is restricted due to its poor water solubility, short half-life, and low bioavailability. The aim of this study is to utilize the metal organic framework material MOF-5 to load ORI in order to improve its release characteristics and bioavailability. Herein, MOF-5 was synthesized by the solvothermal method and direct addition method, and characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetric Analysis (TG), Brunauer-Emmett-Teller (BET), and Dynamic Light Scattering (DLS), respectively. MOF-5 prepared by the optimal synthesis method was selected for drug-loading and in vitro release experiments. HepG2 cells were model cells. MTT assay, 4',6-diamidino-2-phenylindole (DAPI) staining and Annexin V/PI assay were used to detect the biological safety of blank carriers and the anticancer activity of drug-loaded materials. The results showed that nano-MOF-5 prepared by the direct addition method had complete structure, uniform size and good biocompatibility, and was suitable as an ORI carrier. The drug loading of ORI@MOF-5 was 52.86% ± 0.59%. The sustained release effect was reliable, and the cumulative release rate was about 87% in 60 h. ORI@MOF-5 had significant cytotoxicity (IC50:22.99 µg/mL) and apoptosis effect on HepG2 cells. ORI@MOF-5 is hopeful to become a new anticancer sustained release preparation. MOF-5 has significant potential as a drug carrier material.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Diterpenos de Tipo Kaurano/administración & dosificación , Diterpenos de Tipo Kaurano/química , Portadores de Fármacos/química , Estructuras Metalorgánicas , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Análisis Espectral , Termogravimetría
8.
Zhongguo Zhong Yao Za Zhi ; 44(18): 3994-3999, 2019 Sep.
Artículo en Zh | MEDLINE | ID: mdl-31872736

RESUMEN

In recent years,the development and application of classical famous prescriptions have attracted much attention. However,the differences between ancient and modern conditions lead to difficulties in carrying out practical work. In this paper,with Houpu Wenzhong Decoction as an example,the key technologies of boiling granularity,water addition,boiling time and sample pretreatment methods were investigated on the basis of sufficient literature research. The experimental results showed that there was no significant difference in the concentration of index components between those with different granularity( 2 mm and 3-5 mm) and different decocting time( 30 min and 60 min),but the extraction rate of index components was relatively high when the granularity of powder was 2 mm and decocting time was 30 min. With the increase of water content,the concentration of index components and the extraction rate were increased in varying degrees. A certain proportion of methanol aqueous solution was used as the resolvent before content determination of the reference sample of Houpu Wenzhong Decoction,which could take into account both the spectral information of water-soluble components and fat-soluble components in the prescription,and help to display the overall information of the prescription' s chemical components more comprehensively. At the same time,the boiling and dispersing classical prescriptions in the Catalogue of Ancient Classical Prescriptions( the first batch) were collected and summarized in this study; the key influencing factors of decocting process were analyzed from different angles,and preliminary research suggestions were put forward,so as to provide a certain direction and reference for the establishment of quality standard of Houpu Wenzhong Decoction,as well as for the development,research and clinical application of boiling and dispersing classical prescriptions.


Asunto(s)
Medicamentos Herbarios Chinos/normas , Polvos , Prescripciones
9.
RSC Adv ; 11(14): 8323-8345, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423324

RESUMEN

The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.

10.
Pharmaceutics ; 12(3)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151012

RESUMEN

: In recent years, metal organic frameworks (MOFs) have been widely developed as vehicles for the effective delivery of drugs to tumor tissues. Due to the high loading capacity and excellent biocompatibility of MOFs, they provide an unprecedented opportunity for the treatment of cancer. However, drugs which are commonly used to treat cancer often cause side effects in normal tissue accumulation. Therefore, the strategy of drug targeting delivery based on MOFs has excellent research significance. Here, we introduce several intelligent targeted drug delivery systems based on MOFs and their characteristics as drug-loading systems, and the challenges of MOFs are discussed. This article covers the following types of MOFs: Isoreticular Metal Organic Frameworks (IRMOFs), Materials of Institute Lavoisier (MILs), Zeolitic Imidazolate Frameworks (ZIFs), University of Oslo (UiOs), and MOFs-based core-shell structures. Generally, MOFs can be reasonably controlled at the nanometer size to effectively achieve passive targeting. In addition, different ligands can be modified on MOFs for active or physicochemical targeting. On the one hand, the targeting strategy can improve the concentration of the drugs at the tumor site to improve the efficacy, on the other hand, it can avoid the release of the drugs in normal tissues to improve safety. Despite the challenges of clinical application of MOFs, MOFs have a number of advantages as a kind of smart delivery vehicle, which offer possibilities for clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA