Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant J ; 115(3): 724-741, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37095638

RESUMEN

Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.


Asunto(s)
Capsicum , Factores de Transcripción/metabolismo , Carotenoides/metabolismo , Pigmentos Biológicos/metabolismo , Capsicum/genética , Capsicum/metabolismo , Color , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Transactivadores/genética , Filogenia
2.
Mol Breed ; 43(3): 17, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37313295

RESUMEN

Mushroom leaves (MLs) are malformed leaves that develop from the leaf veins in some of Chinese kale genotypes. To study the genetic model and molecular mechanism of ML development in Chinese kale, the F2 segregation population was constructed by two inbred lines, genotype Boc52 with ML and genotype Boc55 with normal leaves (NL). In the present study, we have identified for the first time that the development of mushroom leaves may be affected by the change of adaxial-abaxial polarity of leaves. Examination of the phenotypes of F1 and F2 segregation populations suggested that ML development is controlled by two dominant major genes inherited independently. BSA-seq analysis showed that a major quantitative trait locus (QTL) qML4.1 that controls ML development is located within 7.4 Mb on chromosome kC4. The candidate region was further narrowed to 255 kb by linkage analysis combined with insertion/deletion (InDel) markers, and 37 genes were predicted in this region. According to the expression and annotation analysis, a B3 domain-containing transcription factor NGA1-like gene, BocNGA1, was identified as a key candidate gene for controlling ML development in Chinese kale. Fifteen single nucleotide polymorphisms (SNPs) were found in coding sequences and 21 SNPs and 3 InDels found in the promoter sequences of BocNGA1 from the genotype Boc52 with ML. The expression levels of BocNGA1 in ML genotypes are significantly lower than in the NL genotypes, which suggests that BocNGA1 may act as a negative regulator for ML genesis in Chinese kale. This study provides a new foundation for Chinese kale breeding and for the study of the molecular mechanism of plant leaf differentiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01364-6.

3.
Physiol Plant ; 174(5): e13773, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36066309

RESUMEN

Anthocyanins, vital metabolites in plants, are formed by anthocyanidins combined with various monosaccharides, including glucose, rhamnose, and arabinose. Rhamnose contributes greatly to the glycosylation of anthocyanidins. There are two kinds of rhamnose synthase (RS): rhamnose biosynthesis (RHM), and nucleotide-RS/epimerase-reductase (UER1). Nevertheless, no RS isoform was reported to be involved in anthocyanin synthesis. Here, three homologous PhRHM genes, namely PhRHM1, PhRHM2, and PhRHM3, and one PhUER1 gene from petunia were cloned and characterized. Green fluorescent protein fusion protein assays revealed that PhRHMs and PhUER1 are localized in the cytoplasm. We obtained PhRHM1 or/and PhRHM2 or PhUER1 silenced petunia plants and did not attempt to obtain PhRHM3 silenced plants since PhRHM3 mRNA was not detected in petunia organs examined. PhRHM1 and PhRHM2 (PhRHM1-2) silencing induced abnormal plant growth and decreased the contents of l-rhamnose, photosynthetic pigments and total anthocyanins, while PhUER1 silencing did not cause any visible phenotypic changes. Flavonoid metabolome analysis further revealed that PhRHM1-2 silencing reduced the contents of anthocyanins with rhamnose residue. These results revealed that PhRHMs contribute to the biosynthesis of rhamnose and that PhRHMs participate in the anthocyanin rhamnosylation in petunia, while PhUER1 does not.


Asunto(s)
Petunia , Petunia/genética , Antocianinas/metabolismo , Ramnosa/metabolismo , Arabinosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo , Hojas de la Planta/metabolismo , Flavonoides/metabolismo , Oxidorreductasas/metabolismo , Glucosa/metabolismo , Nucleótidos/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499110

RESUMEN

Progoitrin (2-hydroxy-3-butenyl glucosinolate, PRO) is the main source of bitterness of Brassica plants. Research on the biosynthesis of PRO glucosinolate can aid the understanding of the nutritional value in Brassica plants. In this study, four ODD genes likely involved in PRO biosynthesis were cloned from Chinese kale. These four genes, designated as BocODD1-4, shared 75-82% similarities with the ODD sequence of Arabidopsis. The sequences of these four BocODDs were analyzed, and BocODD1 and BocODD2 were chosen for further study. The gene BocODD1,2 showed the highest expression levels in the roots, followed by the leaves, flowers, and stems, which is in accordance with the trend of the PRO content in the same tissues. Both the expression levels of BocODD1,2 and the content of PRO were significantly induced by high- and low-temperature treatments. The function of BocODDs involved in PRO biosynthesis was identified. Compared with the wild type, the content of PRO was increased twofold in the over-expressing BocODD1 or BocODD2 plants. Meanwhile, the content of PRO was decreased in the BocODD1 or BocODD2 RNAi lines more than twofold compared to the wildtype plants. These results suggested that BocODD1 and BocODD2 may play important roles in the biosynthesis of PRO glucosinolate in Chinese kale.


Asunto(s)
Arabidopsis , Brassica , Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Glucosinolatos
5.
J Exp Bot ; 71(16): 4858-4876, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32364241

RESUMEN

Cytosolic acetyl-CoA is an intermediate of the synthesis of most secondary metabolites and the source of acetyl for protein acetylation. The formation of cytosolic acetyl-CoA from citrate is catalysed by ATP-citrate lyase (ACL). However, the function of ACL in global metabolite synthesis and global protein acetylation is not well known. Here, four genes, PaACLA1, PaACLA2, PaACLB1, and PaACLB2, which encode the ACLA and ACLB subunits of ACL in Petunia axillaris, were identified as the same sequences in Petunia hybrida 'Ultra'. Silencing of PaACLA1-A2 and PaACLB1-B2 led to abnormal leaf and flower development, reduced total anthocyanin content, and accelerated flower senescence in petunia 'Ultra'. Metabolome and acetylome analysis revealed that PaACLB1-B2 silencing increased the content of many downstream metabolites of acetyl-CoA metabolism and the levels of acetylation of many proteins in petunia corollas. Mechanistically, the metabolic stress induced by reduction of acetyl-CoA in PaACL-silenced petunia corollas caused global and specific changes in the transcriptome, the proteome, and the acetylome, with the effect of maintaining metabolic homeostasis. In addition, the global proteome and acetylome were negatively correlated under acetyl-CoA deficiency. Together, our results suggest that ACL acts as an important metabolic regulator that maintains metabolic homeostasis by promoting changes in the transcriptome, proteome. and acetylome.


Asunto(s)
Petunia , Proteoma , ATP Citrato (pro-S)-Liasa , Acetilcoenzima A , Flores/genética , Homeostasis , Petunia/genética
6.
Mol Biol Rep ; 47(8): 6027-6041, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32725605

RESUMEN

The B-box proteins (BBXs) are a class of zinc finger transcription factors containing one or two B-BOX domains that play important roles in plant growth, development and stress response. The petunia (Petunia hybrida) is a model ornamental plant, and its draft genome has been published. However, no systematic study of the BBX gene family in Petunia has been reported. In this study, a total of 28 BBX members from the Petunia genome were identified. We performed analyses of their phylogenetic relationships, structures, conserved motifs, promoter regions, and expression patterns. Based on the phylogenetic relationship, the PhBBXs were divided into six groups. Analysis of the gene structures and conserved motifs further confirmed the closer relationships in each group. Based on the RNA-seq data, the transcript abundance of PhBBXs in different tissues were divided into two major groups. The analysis of cis-elements showed that many stress responsive elements appeared in the promoter region of most PhBBX genes. The stress response patterns of PhBBXs were detected under drought, salinity, cold and heat treatments. Based on the RNA-seq data, we found that 3 genes responded to drought, 8 genes responded to salt, 18 genes responded to cold, and 15 genes responded to heat. In conclusion, this study may facilitate further functional studies of BBXs in Petunia.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Familia de Multigenes , Petunia/genética , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Frío , Secuencia Conservada , Sequías , Calor , Filogenia , Proteínas de Plantas/biosíntesis , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , RNA-Seq , Salinidad , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Transcripción/biosíntesis
7.
New Phytol ; 223(2): 922-938, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087356

RESUMEN

Plants produce countless specialized metabolites crucial for their development and fitness, and many are useful bioactive compounds. Capsaicinoids are intriguing genus-specialized metabolites that confer a pungent flavor to Capsicum fruits, and they are widely applied in different areas. Among the five domesticated Capsicum species, Capsicum chinense has a high content of capsaicinoids, which results in an extremely hot flavor. However, the species-specific upregulation of capsaicinoid-biosynthetic genes (CBGs) and the evolution of extremely pungent peppers are not well understood. We conducted genetic and functional analyses demonstrating that the quantitative trait locus Capsaicinoid1 (Cap1), which is identical to Pun3 contributes to the level of pungency. The Cap1/Pun3 locus encodes the Solanaceae-specific MYB transcription factor MYB31. Capsicum species have evolved placenta-specific expression of MYB31, which directly activates expression of CBGs and results in genus-specialized metabolite production. The capsaicinoid content depends on MYB31 expression. Natural variations in the MYB31 promoter increase MYB31 expression in C. chinense via the binding of the placenta-specific expression of transcriptional activator WRKY9 and augmentation of CBG expression, which promotes capsaicinoid biosynthesis. Our findings provide insights into the evolution of extremely pungent C. chinense, which is due to natural variations in the master regulator, and offers targets for engineering or selecting flavor in Capsicum.


Asunto(s)
Evolución Biológica , Capsicum/genética , Variación Genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Bases , Vías Biosintéticas/genética , Capsaicina/metabolismo , Regulación de la Expresión Génica de las Plantas , Mapeo Físico de Cromosoma , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718028

RESUMEN

Chinese kale (Brassica oleracea var. chinensis Lei) is an important vegetable crop in South China, valued for its nutritional content and taste. Nonetheless, the thermal tolerance of Chinese kale still needs improvement. Molecular characterization of Chinese kale's heat stress response could provide a timely solution for developing a thermally tolerant Chinese kale variety. Here, we report the cloning of multi-protein bridging factor (MBF) 1c from Chinese kale (BocMBF1c), an ortholog to the key heat stress responsive gene MBF1c. Phylogenetic analysis showed that BocMBF1c is highly similar to the stress-response transcriptional coactivator MBF1c from Arabidopsis thaliana (AtMBF1c), and the BocMBF1c coding region conserves MBF1 and helix-turn-helix (HTH) domains. Moreover, the promoter region of BocMBF1c contains three heat shock elements (HSEs) and, thus, is highly responsive to heat treatment. This was verified in Nicotiana benthamiana leaf tissue using a green fluorescent protein (GFP) reporter. In addition, the expression of BocMBF1c can be induced by various abiotic stresses in Chinese kale which indicates the involvement of stress responses. The BocMBF1c-eGFP (enhanced green fluorescent protein) chimeric protein quickly translocated into the nucleus under high temperature treatment in Nicotiana benthamiana leaf tissue. Overexpression of BocMBF1c in Arabidopsis thaliana results in a larger size and enhanced thermal tolerance compared with the wild type. Our results provide valuable insight for the role of BocMBF1c during heat stress in Chinese kale.


Asunto(s)
Brassica/genética , Proteínas de Plantas/genética , Termotolerancia , Transactivadores/genética , Transporte Activo de Núcleo Celular , Brassica/metabolismo , Núcleo Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Nicotiana/genética , Transactivadores/química , Transactivadores/metabolismo , Transgenes
9.
Plant Physiol ; 173(1): 668-687, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810942

RESUMEN

Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation.


Asunto(s)
Petunia/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinación , Aminoácidos/biosíntesis , Degradación Asociada con el Retículo Endoplásmico , Etilenos/metabolismo , Etilenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Petunia/efectos de los fármacos , Petunia/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo
10.
J Exp Bot ; 68(3): 457-467, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204578

RESUMEN

Anthocyanins, a class of flavonoids, are responsible for the orange to blue coloration of flowers and act as visual attractors to aid pollination and seed dispersal. Malonyl-CoA is the precursor for the formation of flavonoids and anthocyanins. Previous studies have suggested that malonyl-CoA is formed almost exclusively by acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA from acetyl-CoA and bicarbonate. In the present study, the full-length cDNA of Petunia hybrida acyl-activating enzyme 13 (PhAAE13), a member of clade VII of the AAE superfamily that encodes malonyl-CoA synthetase, was isolated. The expression of PhAAE13 was highest in corollas and was down-regulated by ethylene. Virus-induced gene silencing of petunia PhAAE13 significantly reduced anthocyanin accumulation, fatty acid content, and cuticular wax components content, and increased malonic acid content in flowers. The silencing of PhAAE3 and PhAAE14, the other two genes in clade VII of the AAE superfamily, did not change the anthocyanin content in petunia flowers. This study provides strong evidence indicating that PhAAE13, among clade VII of the AAE superfamily, is specifically involved in anthocyanin biosynthesis in petunia flowers.


Asunto(s)
Antocianinas/metabolismo , Flores/metabolismo , Expresión Génica , Silenciador del Gen , Malonatos/metabolismo , Petunia/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Etilenos/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Petunia/enzimología , Petunia/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Rayos Ultravioleta
12.
Plant Cell Rep ; 34(9): 1561-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25987314

RESUMEN

KEY MESSAGE: Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.


Asunto(s)
Flores/crecimiento & desarrollo , Petunia/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Etilenos/farmacología , Flores/efectos de los fármacos , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Petunia/efectos de los fármacos , Petunia/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
13.
Molecules ; 20(11): 20254-67, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26569208

RESUMEN

Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.


Asunto(s)
Brassica/genética , Brassica/metabolismo , Clonación Molecular , Expresión Génica , Genotipo , Glucosinolatos/biosíntesis , Brassica/clasificación , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Imidoésteres , Oximas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Sulfóxidos , Transaminasas/genética , Transaminasas/metabolismo
14.
Environ Sci Pollut Res Int ; 30(19): 55143-55157, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36890404

RESUMEN

Cemented tailings backfill (CTB) is the most cost-effective and environmentally friendly method to recycle tailings for filling mining. It is of great significance to study the fracture mechanism of CTB for safe mining. In this study, three cylindrical CTB samples with a cement-tailings ratio of 1:4 and a mass fraction of 72% were prepared. An acoustic emission (AE) test under uniaxial compression (UC) with WAW-300 microcomputer electro-hydraulic servo universal testing machine and DS2 series full information AE signal analyzer was carried out to discuss the AE characteristics of CTB, such as hits, energy, peak frequency, and AF-RA. Combined with particle flow and moment tensor theory, a meso AE model of CTB was constructed to reveal the fracture mechanism of CTB. The results show that (1) the AE law of CTB under UC has periodic characteristics, which can be divided into the rising stage, stable stage, booming stage, and active stage. (2) The peak frequency of the AE signal is mainly focused on three frequency bands. The ultra-high frequency AE signal may be the precursor information for CTB failure. (3) The low frequency band AE signals represent shear crack, while the medium and high frequency band AE signals represent tension crack. The shear crack initially decreases and then increases, and the tension crack is the opposite. (4) The fracture types of the AE source are divided into tension crack, mixed crack, and shear crack. The tension crack is dominant, while a larger magnitude AE source is frequently shear crack. The results can provide a basis for the stability monitoring and fracture prediction of CTB.


Asunto(s)
Acústica , Minería , Presión
15.
Plants (Basel) ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111909

RESUMEN

Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd's mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes.

16.
Mol Biol Rep ; 39(7): 7525-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22331487

RESUMEN

The molecular basis of flower bud differentiation in flowering Chinese cabbage (Brassica rapa L. ssp. Chinensis var. utilis Tsen et Lee) was studied in this work. Samples were taken from two varieties, the early-blooming "Youqin 49" and the late-blooming "Youqingtiancaixin 80", at five different developmental stages and studied via cDNA-AFLP. Nineteen expression sequence tags (ESTs) associated with bolting or flowering were isolated and cloned. Blast results indicated that 15 ESTs were involved in the synthesis of anthocayanins, photosynthesis, signal transduction, and phytochrome production. Two ESTs had high similarity to hypothetical proteins with unknown function. Two other ESTs shared no similarity to any sequence in the NCBI database and potentially may be newly identified genes. The deduced amino acid sequences of EST amplified by primer A6T4 or A8T4 had high similarity to both dihydroflavonol reductase (DFR) and UDP-D: -apiose/UDP-D: -xylose synthase (AXS), thus was named BrcuDFR-like/BrcuAXS. Using the cDNA sequence, a putative BrcuDFR-like/BrcuAXS gene was cloned and characterized from flowering Chinese cabbage via rapid amplification of cDNA ends (RACE). The full-length cDNA has 1332 bp with an open frame of 919 bp which codes for a polypeptide of 313 amino acids. The corresponding genome sequence is 2,046 bp. Comparison of cDNA and its corresponding genomic sequence indicates that BrcuDFR-like/BrcuAXS contains 9 exons and 8 introns. The temporal expression patterns indicated the gene is more likely to encode the DFR protein, which catalyzes the synthesis of anthocayanins, than UDP-D: -apiose/UDP-D: -xylose synthase (AXS), which catalyzes the conversion of UDP-D: -glucuronate to a mixture of UDP-D: -apiose and UDP-D: -xylose. Further work is needed to determine what role BrcuDFR-like/BrcuAXS plays during floral organ development.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Brassica rapa/genética , Flores/genética , Genes de Plantas , Pentosas/biosíntesis , Uridina Difosfato Xilosa/biosíntesis , Oxidorreductasas de Alcohol/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Brassica rapa/crecimiento & desarrollo , Mapeo Cromosómico , Cartilla de ADN , Etiquetas de Secuencia Expresada , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
Genet Mol Biol ; 35(4): 810-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23271943

RESUMEN

Previous work on gene expression analysis based on RNA sequencing identified a variety of differentially expressed cDNA fragments in the genic male sterile-fertile line 114AB of Capsicum annuum L. In this work, we examined the accumulation of one of the transcript-derived fragments (TDFs), CaMF3 (male fertile 3), in the flower buds of a fertile line. The full genomic DNA sequence of CaMF3 was 1,951 bp long and contained 6 exons and 5 introns, with the complete sequence encoding a putative 25.89 kDa protein of 234 amino acids. The predicted protein of CaMF3 shared sequence similarity with members of the isoamyl acetate-hydrolyzing esterase (IAH1) protein family. CaMF3 expression was detected only in flower buds at stages 7 and 8 and in open flowers of a male fertile line; no expression was observed in any organs of a male sterile line. Fine expression analysis revealed that CaMF3 was expressed specifically in anthers of the fertile line. These results suggest that CaMF3 is an anther-specific gene that may be essential for anther or pollen development in C. annuum.

18.
Micromachines (Basel) ; 13(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36363961

RESUMEN

The influence of the substrate temperature on the structural, surface morphological, optical and nanomechanical properties of NiO films deposited on glass substrates using radio-frequency magnetron sputtering was examined by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Visible spectroscopy and nanoindentation, respectively. The results indicate that the substrate temperature exhibits significant influences on both the grain texturing orientation and surface morphology of the films. Namely, the dominant crystallographic orientation of the films switches from (111) to (200) accompanied by progressively roughening of the surface when the substrate temperature is increased from 300 °C to 500 °C. The average transmittance of the NiO films was also found to vary in the range of 60-85% in the visible wavelength region, depending on the substrate temperature and wavelength. In addition, the optical band gap calculated from the Tauc plot showed an increasing trend from 3.18 eV to 3.56 eV with increasing substrate temperature. Both the hardness and Young's modulus of NiO films were obtained by means of the nanoindentation continuous contact stiffness measurements mode. Moreover, the contact angle between the water droplet and film surface also indicated an intimate correlation between the surface energy, hence the wettability, of the film and substrate temperature.

19.
Front Plant Sci ; 13: 971230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161016

RESUMEN

The fruit development and ripening process involve a series of changes regulated by fine-tune gene expression at the transcriptional level. Acetylation levels of histones on lysine residues are dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which play an essential role in the control of gene expression. However, their role in regulating fruit development and ripening process, especially in pepper (Capsicum annuum), a typical non-climacteric fruit, remains to understand. Herein, we performed genome-wide analyses of the HDAC and HAT family in the pepper, including phylogenetic analysis, gene structure, encoding protein conserved domain, and expression assays. A total of 30 HAT and 15 HDAC were identified from the pepper genome and the number of gene differentiation among species. The sequence and phylogenetic analysis of CaHDACs and CaHATs compared with other plant HDAC and HAT proteins revealed gene conserved and potential genus-specialized genes. Furthermore, fruit developmental trajectory expression profiles showed that CaHDAC and CaHAT genes were differentially expressed, suggesting that some are functionally divergent. The integrative analysis allowed us to propose CaHDAC and CaHAT candidates to be regulating fruit development and ripening-related phytohormone metabolism and signaling, which also accompanied capsaicinoid and carotenoid biosynthesis. This study provides new insights into the role of histone modification mediate development and ripening in non-climacteric fruits.

20.
Genes (Basel) ; 12(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34573381

RESUMEN

The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD genes family is necessary. Here, we identified 160, 179, and 337 putative 2OGDs from Brassica rapa, Brassica oleracea, and Brassica napus. According to their gene structure, domain, phylogenetic features, function, and previous studies, we also divided 676 2OGDs into three subfamilies: DOXA, DOXB, and DOXC. Additionally, homologous and phylogenetic comparisons of three subfamily genes provided valuable insight into the evolutionary characteristics of the 2OGD genes from Brassica plants. Expression profiles derived from the transcriptome and Genevestigator database exhibited distinct expression patterns of the At2OGD, Br2OGD, and Bo2OGD genes in different developmental stages, tissues, or anatomical parts. Some 2OGD genes showed high expression levels in various tissues, such as callus, seed, silique, and root tissues, while other 2OGD genes were expressed at very low levels in other tissues. Analysis of six Bo2OGD genes in different tissues by qRT-PCR indicated that these genes are involved in the metabolism of gibberellin, which in turn regulates plant growth and development. Our working system analysed 2OGD gene families of three Brassica plants and laid the foundation for further study of their functional characterization.


Asunto(s)
Brassica/genética , Dioxigenasas/genética , Proteínas de Arabidopsis/genética , Brassica/clasificación , Brassica/crecimiento & desarrollo , Brassica/metabolismo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Giberelinas/metabolismo , Redes y Vías Metabólicas/genética , Familia de Multigenes , Filogenia , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA