RESUMEN
Botryosphaeria dothidea is the main fungal pathogen responsible for causing Chinese hickory (Carya cathayensis) dry rot disease, posing a serious threat to the Chinese hickory industry. Understanding the molecular basis of B. dothidea infection and the host's resistance mechanisms is crucial for controlling and managing the ecological impact of Chinese hickory dry rot disease. This study utilized ultrastructural observations to reveal the process of B. dothidea infection and colonization in Chinese hickory, and investigated the impact of B. dothidea infection on Chinese hickory biochemical indicators and plant hormone levels. Through high-throughput transcriptome sequencing, the gene expression profiles associated with different stages of B. dothidea infection in Chinese hickory and their corresponding defense responses were described. Additionally, a series of key genes closely related to non-structural carbohydrate metabolism, hormone metabolism, and plant-pathogen interactions during B. dothidea infection in Chinese hickory were identified, including genes encoding DUF, Myb_DNA-binding, and ABC transporter proteins. These findings provide important insights into elucidating the pathogenic mechanisms of B. dothidea and the resistance genes in Chinese hickory.
Asunto(s)
Ascomicetos , Carya , Resistencia a la Enfermedad , Enfermedades de las Plantas , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma , Carya/genética , Carya/microbiologíaRESUMEN
The development of supramolecular nanocomposite hydrogels with good mechanical properties and multifunctional characteristics remains challenging. The reinforced role of interfacial weak interactions is important for the mechanical properties of nanocomposite hydrogels. Here, a dynamic host-guest inclusion complex from the host molecule CB[7] and guest units was employed to prepare Fe3O4 hybrid supramolecular nanocomposite hydrogels. The results show that the as-obtained hydrogel with a porous structure was prepared. The CB[7]-modified Fe3O4 (Fe3O4@CB[7]) nanoparticles severed as a cross-linker for fabricating the hydrogel's network. By changing the Fe3O4@CB[7] content, their tensile stress ranged from 0.102 to 0.403 MPa and their compression stress ranged (70% compression strain) from 0.059 to 0.775 MPa. By changing the guest units, their tensile stress ranged from 0.3 MPa to 0.403 MPa. The self-healing efficiency of the hydrogels was 99% after 48 h at room temperature. The as-obtained hydrogels with strain sensitivity can be applied for detecting the movement of an elbow and finger. The supramolecular hydrogel exhibits NIR responsiveness, self-healing, injectability, tunable mechanical strength and conductive ability, and can be used in flexible electronics.
RESUMEN
PURPOSE: Gliomas are the most common primary brain tumor. Currently, topological alterations of whole-brain functional network caused by gliomas are not fully understood. The work here clarified the topological reorganization of the functional network in patients with unilateral frontal low-grade gliomas (LGGs). METHODS: A total of 45 patients with left frontal LGGs, 19 with right frontal LGGs, and 25 healthy controls (HCs) were enrolled. All the resting-state functional MRI (rs-fMRI) images of the subjects were preprocessed to construct the functional network matrix, which was used for graph theoretical analysis. A two-sample t-test was conducted to clarify the differences in global and nodal network metrics between patients and HCs. A network-based statistic approach was used to identify the altered specific pairs of regions in which functional connectivity in patients with LGGs. RESULTS: The local efficiency, clustering coefficient, characteristic path length, and normalized characteristic path length of patients with unilateral frontal LGGs were significantly lower than HCs, while there were no significant differences of global efficiency and small-worldness between patients and HCs. Compared with the HCs, betweenness centrality, degree centrality, and nodal efficiency of several brain nodes were changed significantly in patients. Around the tumor and its adjacent areas, the inter- and intra-hemispheric connections were significantly decreased in patients with left frontal LGGs. CONCLUSION: The patients with unilateral frontal LGGs have altered global and nodal network metrics and decreased inter- and intra-hemispheric connectivity. These topological alterations may be involved in functional impairment and compensation of patients.
Asunto(s)
Mapeo Encefálico , Glioma , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Encéfalo/patología , Glioma/patologíaRESUMEN
BACKGROUND: The post-processing technology of CTA offers significant advantages in evaluating left atrial enlargement (LAE) in patients with persistent atrial fibrillation (PAF). This study aims to identify parameters for rapidly and accurately diagnosing LAE in patients with PAF using CT cross-sections. METHODS: Left atrial pulmonary venous (PV) CT was performed to 300 PAF patients with dual-source CT, and left atrial volume (LAV), left atrial anteroposterior diameter (LAD1), left atrial transverse diameter (LAD2), and left atrial area (LAA) were measured in the ventricular end systolic (ES) and middle diastolic (MD). LA index (LAI) = LA parameter/body surface area (BSA). Left atrial volume index (LAVIES) > 77.7 ml/m2 was used as the reference standard for the LAE diagnosis. RESULTS: 227 patients were enrolled in the group, 101 (44.5%) of whom had LAE. LAVES and LAVMD (r = 0.983), LAVIES and LAVIMD (r = 0.984), LAAES and LAVIES (r = 0.817), LAAMD and LAVIES (r = 0.814) had strong positive correlations. The area under curve (AUC) showed that all measured parameters were suitable for diagnosing LAE, and the diagnostic efficacy was compared as follows: LAA/LAAI> LAD> the relative value index of LAD, LAD2> LAD1. LAA and LAAI demonstrated comparable diagnostic efficacy, with LAA being more readily available than LAAI. CONCLUSIONS: The axial LAA measured by CTA can be served as a parameter for the rapid and accurate diagnosis of LAE in patients with PAF.
Asunto(s)
Fibrilación Atrial , Angiografía por Tomografía Computarizada , Atrios Cardíacos , Valor Predictivo de las Pruebas , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Femenino , Masculino , Persona de Mediana Edad , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/fisiopatología , Anciano , Reproducibilidad de los Resultados , Función del Atrio Izquierdo , Remodelación Atrial , Estudios Retrospectivos , Cardiomegalia/diagnóstico por imagen , Tomografía Computarizada Multidetector , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/fisiopatologíaRESUMEN
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Asunto(s)
Frutas , Magnoliopsida , Animales , Femenino , Frutas/genética , Filogenia , Magnoliopsida/genética , Ovario , Semillas/genéticaRESUMEN
Nickel sulfides are promising anode candidates in sodium ion batteries (SIBs) due to high capacity and abundant reserves. However, their applications are restricted by poor cycling stability and slow reaction kinetics. Thus, mesoporous nickel sulfide microsphere encapsulated in nitrogen, sulfur dual-doped carbon (MNS@NSC) is prepared. The packaged structure and carbon matrix restrain the volume variation together, the N, S dual-doping improves the electronic conductivity and offers extra active sites for sodium storage. Ex-situ X-ray diffraction appeals copper collector adsorbs polysulfide to inhibit the polysulfide accumulation and enhance conductivity. Moreover, the large subsurface attributed to C-S-S-C bonding further boosts pseudocapacitive capacity, conducive to charge transfer. As a result, MNS@NSC delivers a high reversible capacity of 640.2 mAh g-1 after 100 cycles at 0.1 A g-1 , an excellent rate capability (569.8 mAh g-1 at 5 A g-1 ), and a remained capacity of 513.8 mAh g-1 after undergoing 10000 circulations at 10 A g-1 . The MNS@NSC|| Na3 V2 (PO4 )3 full cell shows a cycling performance of specific capacity of 230.8 mAh g-1 after 100 cycles at 1 A g-1 . This work puts forward a valid strategy of combing structural design and heteroatom doping to synthesize high-performance nickel sulfide materials in SIBs.
RESUMEN
The lepidopteran crop pest Plutella xylostella causes severe constraints on Brassica cultivation. Here, we report a novel role for RPX1 (resistance to P. xylostella) in resistance to this pest in Arabidopsis thaliana. The rpx1-1 mutant repels P. xylostella larvae, and feeding on the rpx1-1 mutant severely damages the peritrophic matrix structure in the midgut of the larvae, thereby negatively affecting larval growth and pupation. This resistance results from the accumulation of defence compounds, including the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), due to the upregulation of PENTACYCLIC TRITERPENE SYNTHASE 1 (PEN1), which encodes a key DMNT biosynthetic enzyme. P. xylostella infestation and wounding induce RPX1 protein degradation, which may confer a rapid response to insect infestation. RPX1 inactivation and PEN1 overexpression are not associated with negative trade-offs for plant growth but have much higher seed production than the wild-type in the presence of P. xylostella infestation. This study offers a new strategy for plant molecular breeding against P. xylostella.
Asunto(s)
Arabidopsis , Brassica , Mariposas Nocturnas , Triterpenos , Animales , Arabidopsis/genética , Mariposas Nocturnas/fisiología , Larva/fisiología , Triterpenos/metabolismo , Brassica/metabolismoRESUMEN
An all-polarization-maintaining (PM) mode-locked fiber laser based upon nonlinear polarization evolution (NPE) that operates around 976â nm is presented. The NPE-based mode-locking is realized using a special section of the laser which comprises three pieces of PM fibers with specific deviation angles between the polarization axes and a polarization-dependent isolator. By optimizing the NPE section and adjusting the pump power, dissipative soliton (DS) pulses with a pulse duration of â¼6 ps, a spectral bandwidth of >10â nm and a maximum pulse energy of 0.54 nJ are generated. Self-starting, steady mode-locking operation is achievable within a pump power range of â¼2 W. Moreover, by incorporating a segment of passive fiber into the appropriate location in the laser resonator, an intermediate regime between stable single-pulse mode-locking and noise-like pulse (NLP) is realized in the laser. Our work expands the dimension of the research on the mode-locked Yb-doped fiber laser operating around 976â nm.
RESUMEN
Breast cancer stem cells (BCSCs) are the culprit of triple-negative breast cancer invasiveness and are heterogeneous. It is recognized that the combination of chemotherapy and differentiation therapy for killing BCSCs and non-BCSCs simultaneously is a reliable strategy. In this study, an oil-in-water nanoemulsion was prepared by high-pressure homogenization with coencapsulation of all-trans retinoic acid (ATRA) and doxorubicin (DOX). The preparation process was simple, and the production was easy to scale up. The particle size of the nanoemulsion was 127.2 ± 2.0 nm. Cellular toxicity assay showed that the composite index of the ATRA and DOX was less than 1 and exhibited a fine combined effect. In vivo antitumor efficacy showed that the compound nanoemulsion could reduce the proportion of BCSCs to 1.18% by inhibiting the expression of Pin1. In addition, the combination of ATRA and DOX could reduce the cardiotoxicity of DOX and had higher safety. Hopefully, this work can provide a new insight into developing pharmaceutically acceptable technology for treating BCSCs.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Tretinoina , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Diferenciación Celular , Línea Celular Tumoral , Peptidilprolil Isomerasa de Interacción con NIMARESUMEN
The combustion performance of composite solid propellants (CSPs) significantly affects their application in the field of military and civil aircraft. Ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) composite propellants are one of the common CSPs, and their combustion performance is mainly affected by AP thermal decomposition. In this work, a simple strategy was put forward to effectively construct MXene-supported vanadium pentoxide nanocomposites (MXene/V2O5, MXV). MXene provided a good loading interface for V2O5 nanoparticles, which made MXV obtain a large specific surface area and simultaneously improved the catalytic performance of MXV for AP thermal decomposition. The catalytic experiment results showed that the decomposition temperature of AP mixed with MXV (MXV-4, 2.0 wt %) was 83.4 °C lower than that of pure AP. Moreover, the ignition delay of the AP/HTPB propellant was significantly reduced by 80.4% after adding MXV-4. The burning rate of the propellant was also increased by 202% under the catalytic action of MXV-4. Based on the above results, MXV-4 was expected to be an additive for optimizing the burning process of AP-based composite solid propellants.
RESUMEN
OBJECTIVES: Magnetic resonance imaging has high sensitivity in detecting early brainstem infarction (EBI). However, MRI is not practical for all patients who present with possible stroke and would lead to delayed treatment. The detection rate of EBI on non-contrast computed tomography (NCCT) is currently very low. Thus, we aimed to develop and validate the radiomics feature-based machine learning models to detect EBI (RMEBIs) on NCCT. METHODS: In this retrospective observational study, 355 participants from a multicentre multimodal database established by Huashan Hospital were randomly divided into two data sets: a training cohort (70%) and an internal validation cohort (30%). Fifty-seven participants from the Second Affiliated Hospital of Xuzhou Medical University were included as the external validation cohort. Brainstems were segmented by a radiologist committee on NCCT and 1781 radiomics features were automatically computed. After selecting the relevant features, 7 machine learning models were assessed in the training cohort to predict early brainstem infarction. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and the area under the receiver operating characteristic curve (AUC) were used to evaluate the performance of the prediction models. RESULTS: The multilayer perceptron (MLP) RMEBI showed the best performance (AUC: 0.99 [95% CI: 0.96-1.00]) in the internal validation cohort. The AUC value in external validation cohort was 0.91 (95% CI: 0.82-0.98). CONCLUSIONS: RMEBIs have the potential in routine clinical practice to enable accurate computer-assisted diagnoses of early brainstem infarction in patients with NCCT, which may have important clinical value in reducing therapeutic decision-making time. KEY POINTS: ⢠RMEBIs have the potential to enable accurate diagnoses of early brainstem infarction in patients with NCCT. ⢠RMEBIs are suitable for various multidetector CT scanners. ⢠The patient treatment decision-making time is shortened.
Asunto(s)
Infartos del Tronco Encefálico , Aprendizaje Automático , Humanos , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Diagnóstico Precoz , Infartos del Tronco Encefálico/diagnóstico por imagenRESUMEN
OBJECTIVES: The first treatment strategy for brain metastases (BM) plays a pivotal role in the prognosis of patients. Among all strategies, stereotactic radiosurgery (SRS) is considered a promising therapy method. Therefore, we developed and validated a radiomics-based prediction pipeline to prospectively identify BM patients who are insensitive to SRS therapy, especially those who are at potential risk of progressive disease. METHODS: A total of 337 BM patients (277, 30, and 30 in the training set, internal validation set, and external validation set, respectively) were enrolled in the study. 19,377 radiomics features (3 masks × 3 MRI sequences × 2153 features) extracted from 9 ROIs were filtered through LASSO and Max-Relevance and Min-Redundancy (mRMR) algorithms. The selected radiomics features were combined with 4 clinical features to construct a two-stage cascaded model for the prediction of BM patients' response to SRS therapy using SVM and an ensemble learning classifier. The performance of the model was evaluated by its accuracy, specificity, sensitivity, and AUC curve. RESULTS: Radiomics features were integrated with the clinical features of patients in our optimal model, which showed excellent discriminative performance in the training set (AUC: 0.95, 95% CI: 0.88-0.98). The model was also verified in the internal validation set and external validation set (AUC 0.93, 95% CI: 0.76-0.95 and AUC 0.90, 95% CI: 0.73-0.93, respectively). CONCLUSIONS: The proposed prediction pipeline could non-invasively predict the response to SRS therapy in patients with brain metastases thus assisting doctors to precisely designate individualized first treatment decisions. CLINICAL RELEVANCE STATEMENT: The proposed prediction pipeline combines the radiomics features of multi-modal MRI with clinical features to construct machine learning models that noninvasively predict the response of patients with brain metastases to stereotactic radiosurgery therapy, assisting neuro-oncologists to develop personalized first treatment plans. KEY POINTS: ⢠The proposed prediction pipeline can non-invasively predict the response to SRS therapy. ⢠The combination of multi-modality and multi-mask contributes significantly to the prediction. ⢠The edema index also shows a certain predictive value.
Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Relevancia Clínica , Aprendizaje Automático , Estudios RetrospectivosRESUMEN
Autonomous driving systems are crucial complicated cyber-physical systems that combine physical environment awareness with cognitive computing. Deep reinforcement learning is currently commonly used in the decision-making of such systems. However, black-box-based deep reinforcement learning systems do not guarantee system safety and the interpretability of the reward-function settings in the face of complex environments and the influence of uncontrolled uncertainties. Therefore, a formal security reinforcement learning method is proposed. First, we propose an environmental modeling approach based on the influence of nondeterministic environmental factors, which enables the precise quantification of environmental issues. Second, we use the environment model to formalize the reward machine's structure, which is used to guide the reward-function setting in reinforcement learning. Third, we generate a control barrier function to ensure a safer state behavior policy for reinforcement learning. Finally, we verify the method's effectiveness in intelligent driving using overtaking and lane-changing scenarios.
RESUMEN
Lockdowns imposed to fight the Covid-19 pandemic have cross-border effects. In this paper, we estimate the empirical magnitude of lockdown spillovers in a set of panel local projections. We use daily indicators of economic activity such as stock returns, effective exchange rates, NO2 emissions, mobility and maritime container trade. Lockdown shocks originating in the most important trading partners have a strong and significant adverse effect on economic activity in the home economy. For stock prices and exports, the spillovers can even be larger than the effect of domestic lockdown shocks. The results are robust with respect to alternative country weights used to construct foreign shocks, i.e. weights based on foreign direct investment or the connectedness through value chains. We find that lockdown spillovers have been particularly strong during the first wave of the pandemic. Countries with a higher export share are particularly exposed to lockdown spillovers.
RESUMEN
The regulation of fibrotic activities is key to improving pathological remodelling post-myocardial infarction (MI). Currently, in the clinic, safe and curative therapies for cardiac fibrosis and improvement of the pathological fibrotic environment, scar formation and pathological remodelling post-MI are lacking. Previous studies have shown that miR-486 is involved in the regulation of fibrosis. However, it is still unclear how miR-486 functions in post-MI regeneration. Here, we first demonstrated that miR-486 targeting SRSF3/p21 mediates the senescence of cardiac myofibroblasts to improve their fibrotic activity, which benefits the regeneration of MI by limiting scar size and post-MI remodelling. miR-486-targeted silencing has high potential as a novel target to improve fibrotic activity, cardiac fibrosis and pathological remodelling.
Asunto(s)
MicroARNs , Infarto del Miocardio , Cicatriz/patología , Fibrosis , Humanos , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/patología , Miofibroblastos/patología , Factores de Empalme Serina-Arginina/genéticaRESUMEN
BACKGROUND: Flowering time is an important agronomic trait of crops and significantly affects plant adaptation and seed production. Flowering time varies greatly among maize (Zea mays) inbred lines, but the genetic basis of this variation is not well understood. Here, we report the comprehensive genetic architecture of six flowering time-related traits using a recombinant inbred line (RIL) population obtained from a cross between two maize genotypes, B73 and Abe2, and combined with genome-wide association studies to identify candidate genes that affect flowering time. RESULTS: Our results indicate that these six traits showed extensive phenotypic variation and high heritability in the RIL population. The flowering time of this RIL population showed little correlation with the leaf number under different environmental conditions. A genetic linkage map was constructed by 10,114 polymorphic markers covering the whole maize genome, which was applied to QTL mapping for these traits, and identified a total of 82 QTLs that contain 13 flowering genes. Furthermore, a combined genome-wide association study and linkage mapping analysis revealed 17 new candidate genes associated with flowering time. CONCLUSIONS: In the present study, by using genetic mapping and GWAS approaches with the RIL population, we revealed a list of genomic regions and candidate genes that were significantly associated with flowering time. This work provides an important resource for the breeding of flowering time traits in maize.
Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico/métodos , Ligamiento Genético , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genéticaRESUMEN
Ferroptosis is a form of regulated cell death which can not only kill tumor cells but also enhance immunogenicity of tumor cells, and it is evidenced to be involved in a variety of tumor treatments, especially in cancer immunotherapy. Tumor cell-derived exosomes are reported to influence the progression and metastasis process of tumors. In the process of ferroptosis, exosomes are also demonstrated as mediators to export iron under high intracellular iron concentration and resist ferroptosis. Under this regard, the combined application of ferroptosis inducer and the inhibitor of iron-containing exosomes may enhance the ferroptosis. Herein, biocompatible hybrid nanoparticles composed of the iron oxide nanoparticles, polymers with oxaliplatin attached, and siProminin2 are constructed. The siProminin2 mediated exosomal inhibition can restore the intracellular iron concentration, which can also inhibit the secretion of tumor cell-derived exosomes. The combination of immunotherapy with oxaliplatin, ferroptosis-based cancer therapy and inhibition of tumor cell-derived exosomes can enhance the immune activation effects. The nanoparticles represent an excellent triple therapeutic strategy for enhancing ferroptosis-based cancer therapy and immunotherapy.
Asunto(s)
Ferroptosis , Neoplasias , Línea Celular Tumoral , Humanos , Inmunoterapia , Hierro/metabolismo , Neoplasias/metabolismo , Oxaliplatino/farmacología , PolímerosRESUMEN
High spatial resolution on the image plane (intrinsic spatial resolution) has always been a problem for ultrafast imaging. Single-shot ultrafast imaging methods can achieve high spatial resolution on the object plane through amplification systems but with low intrinsic spatial resolutions. We present frequency domain integration sequential imaging (FISI), which encodes a transient dynamic by an inversed 4f (IFF) system and decodes it using optical spatial frequencies recognition (OFR), which overcomes the limitation of the spatial frequencies recognition algorithm. In an experiment on the process of an air plasma channel, FISI achieved shadow imaging of the channel with a framing rate of 1.26×1013 fps and an intrinsic spatial resolution of 108 lp/mm (the spatial resolution on the image plane). Owing to its excellent framing time and high intrinsic spatial resolution, FISI can probe both repeatable and unrepeatable ultrafast phenomena, such as laser-induced damage, plasma physics, and shockwave interactions in living cells with high quality.
RESUMEN
We demonstrate the generation of soliton and dissipative soliton in an ultrafast thulium (Tm) doped fiber laser based upon cross-phase modulation (XPM) induced mode-locking. The mode-locking is realized by periodically modulating the 2-µm signal through XPM that is activated by an injected 1.5-µm pulsed laser. Such a mechanism enables the laser to be mode-locked in various operation regimes without any real or artificial saturable absorbers. Thanks to the XPM pulling effect, the wavelength of the Tm-doped fiber laser can be tuned by adjusting the repetition frequency of the 1.5-µm pulsed laser. The maximum tuning ranges achieved in this work for the soliton and dissipative soliton regimes are respectively 11 nm and 15 nm. The outcomes of this work not only provide a continuously and controllably wavelength-tunable ultrafast laser but also offer a passively synchronized dual-color fiber laser system, which is promised for many important applications such as Raman spectroscopy, nonlinear frequency conversion systems, and multi-color pump-probe systems.
RESUMEN
Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.