Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytother Res ; 37(9): 4059-4075, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150741

RESUMEN

Random skin flap grafting is the most common skin grafting technique in reconstructive surgery. Despite progress in techniques, the incidence of distal flap necrosis still exceeds 3%, which limits its use in clinical practice. Current methods for treating distal flap necrosis are still lacking. Pinocembrin (Pino) can inhibit reactive oxygen species (ROS) and cell death in a variety of diseases, such as cardiovascular diseases, but the role of Pino in random flaps has not been explored. Therefore, we explore how Pino can enhance flap survival and its specific upstream mechanisms via macroscopic examination, Doppler, immunohistochemistry, and western blot. The results suggested that Pino can enhance the viability of random flaps by inhibiting ROS, pyroptosis and apoptosis. The above effects were reversed by co-administration of Pino with adeno-associated virus-silencing information regulator 2 homolog 3 (SIRT3) shRNA, proving the beneficial effect of Pino on the flaps relied on SIRT3. In addition, we also found that Pino up-regulates SIRT3 expression by activating the AMP-activated protein kinase (AMPK) pathway. This study proved that Pino can improve random flap viability by eliminating ROS, and ROS-induced cell death through the activation of SIRT3, which are triggered by the AMPK/PGC-1α signaling pathway.


Asunto(s)
Piroptosis , Sirtuina 3 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 3/metabolismo , Apoptosis , Necrosis
2.
Sci Total Environ ; 953: 176146, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265686

RESUMEN

Elevated sulfate levels in eutrophic lakes have been observed to induce the release of endogenous phosphorus. While previous studies have predominantly examined its impact on iron-bound phosphorus (FeP), the influence on organic phosphorus (OP), a crucial active phosphorus component in sediments, remains poorly understood. In this study, mesocosms were established with lactate supplementation and varying sulfate concentrations to explore sulfate reduction and its impacts on phosphorus mobilization in freshwater sediments. Lactate addition induced hypoxia and provided substrates, thereby stimulating sulfate reduction with a decline of sulfate levels, an increase of sulfide concentrations, and fluctuations of sulfate-reducing bacteria. Meanwhile, concentrations of total dissolved phosphorus and phosphate were dramatically promoted during lactate decomposition, with a higher sulfate concentration associated with greater phosphorus elevation, correlating with the decrease of total phosphorus in sediment. The increase in phosphorus of the overlying water was partly attributed to FeP release from the sediment, confirmed by a decrease in its sediment content. FeP release was ascribed to dissimilatory reduction of iron oxides or chemical reduction mediated by sulfides in anoxic sediments, leading to the desorption and subsequent release of phosphorus. Evidences included the proliferation of iron-reducing bacteria, a decrease in Fe(II) concentrations in sediment pore- water, and the continuous accumulation of solid iron sulfides in surface sediments. Furthermore, OP mineralization in sediment also contributed to the increase in phosphorus in water columns, confirmed by a reduction in its content and the abundance of fermentation bacteria in surface sediment. Notably, the decrease in OP content accounted for >80 % of the total phosphorus reduction in surface sediment in the end. Thus, sulfur cycling plays a critical role in iron and phosphorus cycling, significantly stimulating not only the mobilization of FeP but also OP in sediments, with OP mineralization potentially being the primary contributor to endogenous phosphorus release.


Asunto(s)
Eutrofización , Sedimentos Geológicos , Lagos , Fósforo , Sulfatos , Contaminantes Químicos del Agua , Fósforo/análisis , Lagos/química , Sedimentos Geológicos/química , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Hierro
3.
Pharmaceutics ; 16(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39339177

RESUMEN

Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.

4.
Mater Today Bio ; 20: 100667, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37273795

RESUMEN

The pore morphology design of bioceramic scaffolds plays a substantial role in the induction of bone regeneration. Specifically, the effects of different scaffold pore geometry designs on angiogenesis and new bone regeneration remain unclear. Therefore, we fabricated Mg/Sr co-doped wollastonite bioceramic (MS-CSi) scaffolds with three different pore geometries (gyroid, cylindrical, and cubic) and compared their effects on osteogenesis and angiogenesis in vitro and in vivo. The MS-CSi scaffolds were fabricated by digital light processing (DLP) printing technology. The pore structure, mechanical properties, and degradation rate of the scaffolds were investigated. Cell proliferation on the scaffolds was evaluated using CCK-8 assays while angiogenesis was assessed using Transwell migration assays, tube formation assays, and immunofluorescence staining. The underlying mechanism was explored by western blotting. Osteogenic ability of scaffolds was evaluated by alkaline phosphatase (ALP) staining, western blotting, and qRT-PCR. Subsequently, a rabbit femoral defect model was prepared to compare differences in the scaffolds in osteogenesis and angiogenesis in vivo. Cell culture experiments showed that the gyroid pore scaffold downregulated YAP/TAZ phosphorylation and enhanced YAP/TAZ nuclear translocation, thereby promoting proliferation, migration, tube formation, and high expression of CD31 in human umbilical vein endothelial cells (HUVECs) while strut-based (cubic and cylindrical pore) scaffolds promoted osteogenic differentiation in bone marrow mesenchymal stem cells and upregulation of osteogenesis-related genes. The gyroid pore scaffolds were observed to facilitate early angiogenesis in the femoral-defect model rabbits while the strut-based scaffolds promoted the formation of new bone tissue. Our study indicated that the pore geometries and pore curvature characteristics of bioceramic scaffolds can be precisely tuned for enhancing both osteogenesis and angiogenesis. These results may provide new ideas for the design of bioceramic scaffolds for bone regeneration.

5.
Biomater Adv ; 141: 213098, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36063576

RESUMEN

The development of injectable cement-like biomaterials via a minimally invasive approach has always attracted considerable clinical interest for modern bone regeneration and repair. Although α-tricalcium phosphate (α-TCP) powders may readily react with water to form hydraulic calcium-deficient hydroxyapatite (CDHA) cement, its long setting time, poor anti-collapse properties, and low biodegradability are suboptimal for a variety of clinical applications. This study aimed to develop new injectable α-TCP-based bone cements via strontium doping, α-calcium sulfate hemihydrate (CSH) addition and liquid phase optimization. A combination of citric acid and chitosan was identified to facilitate the injectable and anti-washout properties, enabling higher resistance to structure collapse. Furthermore, CSH addition (5 %-15 %) was favorable for shortening the setting time (5-20 min) and maintaining the compressive strength (10-14 MPa) during incubation in an aqueous buffer medium. These α-TCP-based composites could also accelerate the biodegradation rate and new bone regeneration in rabbit lateral femoral bone defect models in vivo. Our studies demonstrate that foreign ion doping, secondary phase addition and liquid medium optimization could synergistically improve the physicochemical properties and biological performance of α-TCP-based bone cements, which will be promising biomaterials for repairing bone defects in situations of trauma and diseased bone.


Asunto(s)
Cementos para Huesos , Quitosano , Animales , Materiales Biocompatibles/farmacología , Cementos para Huesos/farmacología , Fosfatos de Calcio , Sulfato de Calcio/química , Ácido Cítrico , Hidroxiapatitas , Conejos , Estroncio , Agua
6.
FEBS Lett ; 582(15): 2338-42, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18503768

RESUMEN

Inward rectifier potassium Kir2.x channels mediate cardiac inward rectifier potassium currents (I(K1)). As a subunit of Kir2.x, the physiological role of Kir2.3 in native cardiomyocytes has not been reported. This study shows that Kir2.3 knock-down remarkably down-regulates Kir2.3 expression (Kir2.3 protein was reduced to 19.91+/-3.24% on the 2nd or 3rd day) and I(K1) current densities (at -120 mV, control vs. knock-down: -5.03+/-0.24 pA/pF, n=5 vs. -1.16+/-0.19 pA/pF, n=7, P<0.001) in neonatal rat cardiomyocytes. The data suggest that Kir2.3 plays a potentially important role in I(K1) currents in neonatal rat cardiomyocytes.


Asunto(s)
Potenciales de la Membrana , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Células Cultivadas , Expresión Génica , Potenciales de la Membrana/genética , Microscopía Confocal , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
7.
J Appl Physiol (1985) ; 105(1): 293-8, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18450979

RESUMEN

Isolation of the pulmonary vein antrum can terminate atrial fibrillation, but the rationale has not been elucidated. In the present study, we show that sheep atrial effective refractory period (ERP) was heterogeneously shortened by acetylcholine administration. After perfusion with 15 muM acetylcholine, the shortest ERP occurred in the pulmonary vein antrum, which was recorded with the standard intracellular microelectrode technique (the ERP results in the pulmonary vein antrum, left atrial posterior wall, roof, free wall and appendage, and right atrial free wall were 52.0 +/- 1.6, 75.1 +/- 2.0, 77.2 +/- 1.7, 85.6 +/- 1.7, 64.3 +/- 2.1, and 90.5 +/- 1.3 ms, respectively; P < 0.05). Immunofluorescent staining revealed that muscarinic type 2 receptors (M(2)R) were also distributed heterogeneously in the atrial myocardium, with the highest density in the antrum (the relative fluorescent intensity results of the M(2)R in the pulmonary vein antrum, left atrial posterior wall, roof, free wall and appendage, and right atrial free wall were 62.64 +/- 2.56, 53.12 +/- 2.76, 51.83 +/- 2.45, 47.90 +/- 2.33, 55.27 +/- 2.08, and 45.53 +/- 2.02, respectively; P < 0.05), which was in accordance with the heterogeneity of ERP distribution. Thus the pulmonary vein antrum is a unique electrophysiological region with high sensitivity to acetylcholine, and its intensive response to acetylcholine is most likely associated with the dense M(2)R distribution of this region. Such an acetylcholine-induced ERP heterogeneity is possibly a substrate for atrial fibrillation and hence one of the potential electrophysiological bases for the isolation therapy.


Asunto(s)
Acetilcolina/farmacología , Venas Pulmonares/fisiología , Vasodilatadores/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Técnica del Anticuerpo Fluorescente , Atrios Cardíacos/efectos de los fármacos , Técnicas In Vitro , Microelectrodos , Agonistas Muscarínicos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Receptor Muscarínico M2/efectos de los fármacos , Receptor Muscarínico M2/metabolismo , Periodo Refractario Electrofisiológico/efectos de los fármacos , Ovinos
8.
Exp Biol Med (Maywood) ; 233(11): 1441-7, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18703749

RESUMEN

The cardiomyocytes in the superior vena cava (SVC) myocardial sleeve have distinct action potentials and ionic current profiles, but the refractoriness of these cells has not been reported. Using standard intracellular microelectrode techniques, we demonstrated in sheep that the effective refractory period (ERP) of the cardiomyocytes in the SVC (114.7 +/- 6.5 ms) is shorter than that in the inferior vena cava (IVC) (166.7 +/- 6.2 ms), right atrial free wall (RAFW) (201.0 +/- 6.0 ms) and right atrial appendage (RAA) (203.1 +/- 5.8 ms) (P < 0.05). The right atrial cardiomyocyte ERP was heterogeneously shortened by acetylcholine, a muscarinic type 2 receptor (M(2)R) agonist. After perfusion with 15 microM acetylcholine, the shortest ERP occurred in the SVC (the ERP in the SVC, IVC, RAFW and RAA was 53.6 +/- 2.7, 98.9 +/- 2.2, 121.8 +/- 6.0 and 109.7 +/- 5.1 ms, respectively; P < 0.05). Carbachol (1 microM), another M(2)R agonist, produced a similar effect as acetylcholine. Furthermore, we used methoctramine, a M(2)R blocker, 4-DAMP, a muscarinic type 3 receptor (M(3)R) blocker, and tropicamide, a muscarinic type 4 receptor (M(4)R) blocker to inhibit the acetylcholine-induced ERP shortening of SVC cardiomyocytes, and found that the 50% inhibitory concentration for methoctramine, 4-DAMP and tropicamide was 5.91, 45.72 and 80.34 nM, respectively. Therefore, we conclude that the sheep SVC myocardial sleeve is a unique electrophysiological region of the right atrium with the shortest ERP both under physiological condition and under cholinergic agonist stimulation. M(2)R might play a major role in the response of the SVC myocardial sleeve to parasympathetic nerve tone. The association between the distinct refractoriness in SVC and atrial fibrillation originating from the region deserves further investigation.


Asunto(s)
Miocardio/citología , Miocitos Cardíacos/fisiología , Ovinos/anatomía & histología , Vena Cava Superior/citología , Acetilcolina/farmacología , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Diaminas/farmacología , Técnicas Electrofisiológicas Cardíacas , Técnicas In Vitro , Microelectrodos , Antagonistas Muscarínicos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Refractometría , Tropicamida/farmacología , Vasodilatadores/farmacología , Vena Cava Superior/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA