Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31353221

RESUMEN

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Cinamatos/farmacología , Resistencia a Antineoplásicos , Antagonistas del Receptor de Estrógeno/uso terapéutico , Femenino , Fulvestrant/uso terapéutico , Células HEK293 , Xenoinjertos , Humanos , Indazoles/farmacología , Ligandos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Polimorfismo de Nucleótido Simple , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
2.
Nature ; 607(7918): 351-355, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584773

RESUMEN

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Asunto(s)
COVID-19 , Protección Cruzada , SARS-CoV-2 , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Protección Cruzada/inmunología , Citocinas , Humanos , Ratones , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos
3.
RNA ; 29(11): 1644-1657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580126

RESUMEN

The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small fraction of sequence space can be analyzed even with high-throughput techniques. Methods to extrapolate from a limited data set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for designing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, identifying potentially active triple and quadruple mutants beyond the experimental data set of single and double mutants. The predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activity. This set of sequences included mutants that form a previously unknown evolutionary "bridge" between two ribozyme families that share a common motif. Individual steps in the method could be examined, understood, and guided by a human, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation.


Asunto(s)
ARN Catalítico , Humanos , ARN Catalítico/genética , ARN Catalítico/metabolismo , Epistasis Genética , Mutación , Evolución Biológica , Aptitud Genética
4.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651466

RESUMEN

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , SARS-CoV-2 , Replicación Viral , Animales , Humanos , Ratones , Alanina , Antivirales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo
5.
Acc Chem Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005057

RESUMEN

ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism.The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA.Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles.The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.

6.
Proc Natl Acad Sci U S A ; 119(31): e2200592119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35858386

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
7.
Biophys J ; 123(4): 451-463, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37924206

RESUMEN

One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.


Asunto(s)
Bentonita , ARN , Colorantes de Rosanilina , Bentonita/química , ARN/química , Arcilla , Silicatos de Aluminio/química , Adsorción , Minerales/química
8.
J Biol Chem ; 299(8): 104955, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354973

RESUMEN

Recovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed. Here, we report that ORF8 is a virally encoded SARS-CoV-2 factor that controls cellular Spike antigen levels. We show that ORF8 limits the availability of mature Spike by inhibiting host protein synthesis and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and recognition by anti-SARS-CoV-2 antibodies. In conditions of limited Spike availability, we found ORF8 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell entry of these virions then leaves fewer Spike molecules at the cell surface, limiting antibody recognition of infected cells. Based on these findings, we propose that SARS-CoV-2 variants may adopt an ORF8-dependent strategy that facilitates immune evasion of infected cells for extended viral production.


Asunto(s)
COVID-19 , Regulación Viral de la Expresión Génica , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Antivirales , COVID-19/inmunología , COVID-19/virología , Evasión Inmune/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Regulación Viral de la Expresión Génica/genética , Células A549 , Células HEK293 , Retículo Endoplásmico/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
9.
PLoS Pathog ; 18(9): e1010811, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095012

RESUMEN

SARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14. SIRT5 is an NAD-dependent protein deacylase critical for cellular metabolism that removes succinyl and malonyl groups from lysine residues. Here we investigated the nature of this interaction and the role of SIRT5 during SARS-CoV-2 infection. We showed that SIRT5 interacts with Nsp14, but not with Nsp10, suggesting that SIRT5 and Nsp10 are parts of separate complexes. We found that SIRT5 catalytic domain is necessary for the interaction with Nsp14, but that Nsp14 does not appear to be directly deacylated by SIRT5. Furthermore, knock-out of SIRT5 or treatment with specific SIRT5 inhibitors reduced SARS-CoV-2 viral levels in cell-culture experiments. SIRT5 knock-out cells expressed higher basal levels of innate immunity markers and mounted a stronger antiviral response, independently of the Mitochondrial Antiviral Signaling Protein MAVS. Our results indicate that SIRT5 is a proviral factor necessary for efficient viral replication, which opens novel avenues for therapeutic interventions.


Asunto(s)
COVID-19 , Sirtuinas , Antivirales , Exorribonucleasas/metabolismo , Humanos , Lisina , Metiltransferasas/metabolismo , NAD , Provirus , ARN Viral/metabolismo , SARS-CoV-2 , Sirtuinas/genética , Proteínas no Estructurales Virales/metabolismo
10.
Radiographics ; 44(6): e230126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722782

RESUMEN

Cardiac tumors, although rare, carry high morbidity and mortality rates. They are commonly first identified either at echocardiography or incidentally at thoracoabdominal CT performed for noncardiac indications. Multimodality imaging often helps to determine the cause of these masses. Cardiac tumors comprise a distinct category in the World Health Organization (WHO) classification of tumors. The updated 2021 WHO classification of tumors of the heart incorporates new entities and reclassifies others. In the new classification system, papillary fibroelastoma is recognized as the most common primary cardiac neoplasm. Pseudotumors including thrombi and anatomic variants (eg, crista terminalis, accessory papillary muscles, or coumadin ridge) are the most common intracardiac masses identified at imaging. Cardiac metastases are substantially more common than primary cardiac tumors. Although echocardiography is usually the first examination, cardiac MRI is the modality of choice for the identification and characterization of cardiac masses. Cardiac CT serves as an alternative in patients who cannot tolerate MRI. PET performed with CT or MRI enables metabolic characterization of malignant cardiac masses. Imaging individualized to a particular tumor type and location is crucial for treatment planning. Tumor terminology changes as our understanding of tumor biology and behavior evolves. Familiarity with the updated classification system is important as a guide to radiologic investigation and medical or surgical management. ©RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Neoplasias Cardíacas , Humanos , Ecocardiografía/métodos , Neoplasias Cardíacas/diagnóstico por imagen , Neoplasias Cardíacas/patología , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía Computarizada por Rayos X/métodos , Organización Mundial de la Salud
11.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924917

RESUMEN

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Asunto(s)
Nocicepción , Fenelzina , Animales , Ratones , Masculino , Fenelzina/farmacología , Proteoma , Proteínas del Tejido Nervioso
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001592

RESUMEN

Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.


Asunto(s)
Células Artificiales/enzimología , Compartimento Celular , Modelos Biológicos , Origen de la Vida , ARN Catalítico/metabolismo , Secuencia de Bases , Evolución Molecular , Ensayos Analíticos de Alto Rendimiento , Cinética , Selección Genética , Termodinámica
13.
Ann Diagn Pathol ; 72: 152323, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38733674

RESUMEN

High risk features in colorectal adenomatous polyps include size >1 cm and advanced histology: high-grade dysplasia and villous architecture. We investigated whether the diagnostic rates of advanced histology in colorectal adenomatous polyps were similar among institutions across the United States, and if not, could differences be explained by patient age, polyp size, and/or CRC rate. Nine academic institutions contributed data from three pathologists who had signed out at least 100 colorectal adenomatous polyps each from 2018 to 2019 taken from patients undergoing screening colonoscopy. For each case, we recorded patient age and sex, polyp size and location, concurrent CRC, and presence or absence of HGD and villous features. A total of 2700 polyps from 1886 patients (mean age: 61 years) were collected. One hundred twenty-four (5 %) of the 2700 polyps had advanced histology, including 35 (1 %) with HGD and 101 (4 %) with villous features. The diagnostic rate of advanced histology varied by institution from 1.7 % to 9.3 % (median: 4.3 %, standard deviation [SD]: 2.5 %). The rate of HGD ranged from 0 % to 3.3 % (median: 1 %, SD: 1.2 %), while the rate of villous architecture varied from 1 % to 8 % (median: 3.7 %, SD: 2.5 %). In a multivariate analysis, the factor most strongly associated with advanced histology was polyp size >1 cm with an odds ratio (OR) of 31.82 (95 % confidence interval [CI]: 20.52-50.25, p < 0.05). Inter-institutional differences in the rate of polyps >1 cm likely explain some of the diagnostic variance, but pathologic subjectivity may be another contributing factor.


Asunto(s)
Pólipos Adenomatosos , Neoplasias Colorrectales , Humanos , Pólipos Adenomatosos/patología , Pólipos Adenomatosos/epidemiología , Pólipos Adenomatosos/diagnóstico , Persona de Mediana Edad , Masculino , Femenino , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/epidemiología , Anciano , Colonoscopía , Pólipos del Colon/patología , Pólipos del Colon/diagnóstico , Pólipos del Colon/epidemiología , Adulto , Estados Unidos/epidemiología , Factores de Riesgo
14.
Ann Rheum Dis ; 82(7): 927-936, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37085289

RESUMEN

OBJECTIVES: A novel longitudinal clustering technique was applied to comprehensive autoantibody data from a large, well-characterised, multinational inception systemic lupus erythematosus (SLE) cohort to determine profiles predictive of clinical outcomes. METHODS: Demographic, clinical and serological data from 805 patients with SLE obtained within 15 months of diagnosis and at 3-year and 5-year follow-up were included. For each visit, sera were assessed for 29 antinuclear antibodies (ANA) immunofluorescence patterns and 20 autoantibodies. K-means clustering on principal component analysis-transformed longitudinal autoantibody profiles identified discrete phenotypic clusters. One-way analysis of variance compared cluster enrolment demographics and clinical outcomes at 10-year follow-up. Cox proportional hazards model estimated the HR for survival adjusting for age of disease onset. RESULTS: Cluster 1 (n=137, high frequency of anti-Smith, anti-U1RNP, AC-5 (large nuclear speckled pattern) and high ANA titres) had the highest cumulative disease activity and immunosuppressants/biologics use at year 10. Cluster 2 (n=376, low anti-double stranded DNA (dsDNA) and ANA titres) had the lowest disease activity, frequency of lupus nephritis and immunosuppressants/biologics use. Cluster 3 (n=80, highest frequency of all five antiphospholipid antibodies) had the highest frequency of seizures and hypocomplementaemia. Cluster 4 (n=212) also had high disease activity and was characterised by multiple autoantibody reactivity including to antihistone, anti-dsDNA, antiribosomal P, anti-Sjögren syndrome antigen A or Ro60, anti-Sjögren syndrome antigen B or La, anti-Ro52/Tripartite Motif Protein 21, antiproliferating cell nuclear antigen and anticentromere B). Clusters 1 (adjusted HR 2.60 (95% CI 1.12 to 6.05), p=0.03) and 3 (adjusted HR 2.87 (95% CI 1.22 to 6.74), p=0.02) had lower survival compared with cluster 2. CONCLUSION: Four discrete SLE patient longitudinal autoantibody clusters were predictive of long-term disease activity, organ involvement, treatment requirements and mortality risk.


Asunto(s)
Autoanticuerpos , Lupus Eritematoso Sistémico , Humanos , Anticuerpos Antinucleares , ADN , Inmunosupresores , Aprendizaje Automático
15.
Nucleic Acids Res ; 49(12): e67, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33772580

RESUMEN

Characterizing genotype-phenotype relationships of biomolecules (e.g. ribozymes) requires accurate ways to measure activity for a large set of molecules. Kinetic measurement using high-throughput sequencing (e.g. k-Seq) is an emerging assay applicable in various domains that potentially scales up measurement throughput to over 106 unique nucleic acid sequences. However, maximizing the return of such assays requires understanding the technical challenges introduced by sequence heterogeneity and DNA sequencing. We characterized the k-Seq method in terms of model identifiability, effects of sequencing error, accuracy and precision using simulated datasets and experimental data from a variant pool constructed from previously identified ribozymes. Relative abundance, kinetic coefficients, and measurement noise were found to affect the measurement of each sequence. We introduced bootstrapping to robustly quantify the uncertainty in estimating model parameters and proposed interpretable metrics to quantify model identifiability. These efforts enabled the rigorous reporting of data quality for individual sequences in k-Seq experiments. Here we present detailed protocols, define critical experimental factors, and identify general guidelines to maximize the number of sequences and their measurement accuracy from k-Seq data. Analogous practices could be applied to improve the rigor of other sequencing-based assays.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Catalítico , Análisis de Secuencia de ADN/métodos , Cinética , Modelos Biológicos , Mutación , ARN Catalítico/genética
16.
Proc Natl Acad Sci U S A ; 117(4): 1951-1961, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932441

RESUMEN

The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed "phanorods"). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae, and the plant pathogen Xanthomonas campestris The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells.


Asunto(s)
Antibacterianos/administración & dosificación , Bacteriófagos/fisiología , Oro/química , Hipertermia Inducida , Nanotubos/química , Terapia de Fagos/métodos , Infecciones por Pseudomonas/terapia , Animales , Perros , Farmacorresistencia Bacteriana Múltiple , Humanos , Rayos Infrarrojos , Células de Riñón Canino Madin Darby , Nanopartículas del Metal/química , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología
17.
Biochemistry ; 61(17): 1757-1765, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994742

RESUMEN

Protein aggregation is an important problem for human health and biotechnology, with consequences in areas ranging from neurodegenerative diseases to protein production yields. Methods to modulate protein aggregation are therefore essential. One suggested method to modulate protein aggregation is the use of nucleic acid aptamers, that is, single-stranded nucleic acids that have been selected to specifically bind to a target. Previous studies in some systems have demonstrated that aptamers may inhibit protein aggregation, including for α-synuclein, a protein implicated in synucleinopathies. However, the mechanisms by which aptamers might affect or modulate aggregation have not been fully determined. In this study, we investigated the effect of an aptamer that binds α-synuclein oligomer, T-SO508, on α-synuclein aggregation in vitro using thioflavin T to monitor aggregation kinetics, and we performed atomic force microscopy, transmission electron microscopy, and analytical ultracentrifugation to characterize intermediate structures. The results indicated that T-SO508, but not control DNA sequences, extends the lag phase of aggregation and stabilizes formation of a small non-fibrillar aggregate complex. Attempts to use the aptamer-induced complexes to seed fibril formation did not in fact accelerate aggregation, indicating that these structures are off-pathway for aggregation. This study highlights a potential mechanism by which aptamers may modulate the aggregation properties of proteins.


Asunto(s)
Aptámeros de Nucleótidos , alfa-Sinucleína , Aptámeros de Nucleótidos/metabolismo , Humanos , Cinética , Microscopía de Fuerza Atómica , Agregado de Proteínas , alfa-Sinucleína/química
18.
Clin Gastroenterol Hepatol ; 20(1): 173-182.e7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34391922

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Although biannual ultrasound surveillance with or without α-fetoprotein (AFP) testing is recommended for at-risk patients, sensitivity for early stage HCC, for which potentially curative treatments exist, is suboptimal. We conducted studies to establish the multitarget HCC blood test (mt-HBT) algorithm and cut-off values and to validate test performance in patients with chronic liver disease. METHODS: Algorithm development and clinical validation studies were conducted with participants in an international, multicenter, case-control study. Study subjects had underlying cirrhosis or chronic hepatitis B virus; HCC cases were diagnosed per the American Association for the Study of Liver Diseases criteria and controls were matched for age and liver disease etiology. Whole blood and serum were shipped to a central laboratory and processed while blinded to case/control status. An algorithm was developed for the mt-HBT, which incorporates methylation biomarkers (HOXA1, TSPYL5, and B3GALT6), AFP, and sex. RESULTS: In algorithm development, with 136 HCC cases (60% early stage) and 404 controls, the mt-HBT showed 72% sensitivity for early stage HCC at 88% specificity. Test performance was validated in an independent cohort of 156 HCC cases (50% early stage) and 245 controls, showing 88% overall sensitivity, 82% early stage sensitivity, and 87% specificity. Early stage sensitivity in clinical validation was significantly higher than AFP at 20 ng/mL or greater (40%; P < .0001) and GALAD (gender, age, Lens culinaris agglutinin-reactive AFP, AFP, and des-γ-carboxy-prothrombin score) of -0.63 or greater (71%; P = .03), although AFP and GALAD at these cut-off values had higher specificities (100% and 93%, respectively). CONCLUSIONS: The mt-HBT may significantly improve early stage HCC detection for patients undergoing HCC surveillance, a critical step to increasing curative treatment opportunities and reducing mortality. ClinicalTrials.gov number NCT03628651.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Biomarcadores , Biomarcadores de Tumor , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Galactosiltransferasas , Pruebas Hematológicas , Hepatitis B Crónica/complicaciones , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Proteínas Nucleares , Precursores de Proteínas , Protrombina , Sensibilidad y Especificidad , alfa-Fetoproteínas
19.
Eur Radiol ; 32(4): 2824-2836, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34797386

RESUMEN

OBJECTIVES: To describe the imaging findings of intimate partner violence (IPV)-related injury and to evaluate the role of longitudinal imaging review in detecting IPV. METHODS: Radiology studies were reviewed in chronological order and IPV-related injuries were recorded among 400 victims of any type of abuse (group 1) and 288 of physical abuse (group 2) from January 2013 to June 2018. The likelihood of IPV was assessed as low/moderate/high based on the review of (1) current and prior anatomically related studies only and (2) longitudinal imaging history consisting of all prior studies. The first radiological study date with moderate/high suspicion was compared to the self-reported date by the victim. RESULTS: A total of 135 victims (33.8%) in group 1 and 144 victims (50%) in group 2 demonstrated IPV-related injuries. Musculoskeletal injury was most common (58.2% and 44.5% in groups 1 and 2, respectively; most commonly lower/upper extremity fractures), followed by neurologic injury (20.9% and 32.9% in groups 1 and 2, respectively; most commonly facial injury). With longitudinal imaging history, radiologists were able to identify IPV in 31% of group 1 and 46.5% of group 2 patients. Amongst these patients, earlier identification by radiologists was provided compared to the self-reported date in 62.3% of group 1 (median, 64 months) and in 52.6% of group 2 (median, 69.3 months). CONCLUSIONS: Musculoskeletal and neurological injuries were the most common IPV-related injuries. Knowledge of common injuries and longitudinal imaging history may help IPV identification when victims are not forthcoming. KEY POINTS: • Musculoskeletal injuries were the most common type of IPV-related injury, followed by neurological injuries. • With longitudinal imaging history, radiologists were able to better raise the suspicion of IPV compared to the selective review of anatomically related studies only. • With longitudinal imaging history, radiologists were able to identify IPV earlier than the self-reported date by a median of 64 months in any type of abuse, and a median of 69.3 months in physical abuse.


Asunto(s)
Fracturas Óseas , Violencia de Pareja , Diagnóstico por Imagen , Humanos , Radiólogos
20.
Chem Rev ; 120(11): 4879-4897, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32011135

RESUMEN

The ability of enzymes, including ribozymes, to catalyze side reactions is believed to be essential to the evolution of novel biochemical activities. It has been speculated that the earliest ribozymes, whose emergence marked the origin of life, were low in activity but high in promiscuity, and that these early ribozymes gave rise to specialized descendants with higher activity and specificity. Here, we review the concepts related to promiscuity and examine several cases of highly promiscuous ribozymes. We consider the evidence bearing on the question of whether de novo ribozymes would be quantitatively more promiscuous than later evolved ribozymes or protein enzymes. We suggest that while de novo ribozymes appear to be promiscuous in general, they are not obviously more promiscuous than more highly evolved or active sequences. Promiscuity is a trait whose value would depend on selective pressures, even during prebiotic evolution.


Asunto(s)
Evolución Química , ARN Catalítico/metabolismo , ARN Catalítico/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA