Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(4): 1157-1175, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36071575

RESUMEN

Auxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development. In this study, the high-level accumulation of endogenous IAA is observed under dark submergence, stimulating rice coleoptile elongation but limiting the root and primary leaf growth during anaerobic germination (AG). We found that oxygen and light can reduce IAA levels, promote the seedling establishment and enhance rice AG tolerance. miRNA microarray profiling and RNA gel blot analysis results show that the expression of miR167 is negatively regulated by submergence; it subsequently modulates the accumulation of free IAA through the miR167-ARF-GH3 pathway. The OsGH3-8 encodes an IAA-amido synthetase that functions to prevent free IAA accumulation. Reduced miR167 levels or overexpressing OsGH3-8 increase auxin metabolism, reduce endogenous levels of free IAA and enhance rice AG tolerance. Our studies reveal that poor seed germination and seedling growth inhibition resulting from excessive IAA accumulation would cause intolerance to submergence in rice, suggesting that a certain threshold level of auxin is essential for rice AG tolerance.


Asunto(s)
Germinación , Oryza , Plantones/metabolismo , Oryza/genética , Anaerobiosis , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408854

RESUMEN

Dysregulated epidermal growth factor receptor (EGFR) expression is frequently observed in non-small cell lung cancer (NSCLC) growth and metastasis. Despite recent successes in the development of tyrosine kinase inhibitors (TKIs), inevitable resistance to TKIs has led to urgent calls for novel EGFR inhibitors. Herein, we report a rational workflow used to identify novel EGFR-TKIs by combining hybrid ligand- and structure-based pharmacophore models. Three types of models were developed in this workflow, including 3D QSAR-, common feature-, and structure-based EGFR-TK domain-containing pharmacophores. A National Cancer Institute (NCI) compound dataset was adopted for multiple-stage pharmacophore-based virtual screening (PBVS) of various pharmacophore models. The six top-scoring compounds were identified through the PBVS pipeline coupled with molecular docking. Among these compounds, NSC609077 exerted a significant inhibitory effect on EGFR activity in gefitinib-resistant H1975 cells, as determined by an enzyme-linked immunosorbent assay (ELISA). Further investigations showed that NSC609077 inhibited the anchorage-dependent growth and migration of lung cancer cells. Furthermore, NSC609077 exerted a suppressive effect on the EGFR/PI3K/AKT pathway in H1975 cells. In conclusion, these findings suggest that hybrid virtual screening may accelerate the development of targeted drugs for lung cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Plant J ; 90(5): 994-1006, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28258650

RESUMEN

The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.


Asunto(s)
Genoma del Cloroplasto/genética , Genoma de Planta/genética , Orchidaceae/genética , Proteínas de Plantas/genética
4.
BMC Genomics ; 18(1): 61, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28068916

RESUMEN

BACKGROUND: Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and regulate gene expression. Many databases are created to describe known TF complexes identified by either mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under different experiment conditions are available, making it possible to investigate condition-specific (cell type and/or physiologic state) TF complexes and their target genes. RESULTS: Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes (called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted 2,392 TF complexes and 13,504 high-confidence or 127,994 low-confidence regulatory interactions amongst TF complexes and their target genes. We validated our predictions by (i) comparing predicted TF complexes to external TF complex databases, (ii) validating selected target genes of TF complexes using ChIP-qPCR and RT-PCR experiments, and (iii) analysing target genes of select TF complexes using gene ontology enrichment to demonstrate the accuracy of our work. Finally, the predicted results above were integrated and employed to construct a CST database. CONCLUSIONS: We built up a methodology to construct the CST database, which contributes to the analysis of transcriptional regulation and the identification of novel TF-TF complex formation in a certain condition. This database also allows users to visualize condition-specific TF regulatory networks through a user-friendly web interface.


Asunto(s)
Inmunoprecipitación de Cromatina , Biología Computacional , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Bases de Datos Genéticas , Ontología de Genes , Humanos , Motivos de Nucleótidos , Transcripción Genética
5.
Theor Appl Genet ; 130(7): 1507-1518, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28470512

RESUMEN

KEY MESSAGE: miR319 was identified as a dwarf-inducing gene from Shiokari and its dwarf near isogenic line, and its transgenic rice showed a reduced plant height. This finding reveals the potential application of miR319 in future molecular breeding. It is well known that microRNAs (miRNAs) play important roles in plant physiology, especially in development and stress responses. However, little is known about the role of miRNAs in plant height. In this study, the rice cultivar Shiokari and its dwarf near isogenic line Shiokari-d6 were analysed to identify and characterize plant height-associated miRNAs. This anatomic and morphological investigation revealed that the major cause of the shorter height of Shiokari-d6 is the significantly dis-elongated internodes, particularly the second internode and those underneath it. The results of miRNA microarray profiling and real-time RT-PCR indicated that miR319 is expressed at a significantly higher level in Shiokari-d6 than in Shiokari. Transgenic rice overexpressing miR319 in Oryza sativa L. cv. Tainung 67 generated through Agrobacterium-mediated transformation had a stable dwarf phenotype regardless of whether the plants were from the T1 or T2 generation. We also found that the internodes of miR319-overexpressing rice are shortened, particularly the third internode and those underneath it. Furthermore, we identified three putative miR319 target genes that were previously uncharacterized with expression levels that were negatively correlated with the expression of miR319. In conclusion, miR319 is the first miRNA proposed to be involved in plant height regulation, and its function may influence the elongation of internodes, which leads to decreased plant height.


Asunto(s)
MicroARNs/genética , Oryza/crecimiento & desarrollo , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
6.
Am J Respir Crit Care Med ; 193(7): 753-66, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26583948

RESUMEN

RATIONALE: Despite the fact that tyrosine kinase inhibitors (TKIs) have been found effective in treating patients harboring activating mutations of epidermal growth factor receptor (EGFR), an acquired secondary mutation, T790M, which lowers the affinity to TKIs, can lead to EGFR TKI resistance after this standard treatment. OBJECTIVES: To evaluate the effect of small molecule T315 on EGFR degradation and its therapeutic efficacy in vitro and in vivo. METHODS: Lung adenocarcinoma cells were treated with T315, and cell proliferation and apoptotic proportion were determined by the CellTiter 96 AQueous MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay and flow cytometry. The effects of T315 on EGFR mRNA and protein levels, autophosphorylation, ubiquitination, and degradation were evaluated by real-time polymerase chain reaction and Western blot, respectively. Direct targeting of T315 to EGFR was confirmed by the in vitro kinase assay and mass spectrometry. Finally, the preclinical effect of T315 was validated in the murine xenograft model in combination with a second-generation TKI, afatinib. MEASUREMENTS AND MAIN RESULTS: We identified T315 as a novel, potent small molecule for suppressing cancer cell proliferation in vitro and in vivo. The therapeutic effect was verified after T315 was combined with a second-generation TKI, afatinib, compared with a single drug administration. We found a new mechanism of action, in that T315 appears to directly bind EGFR and triggers EGFR-Y1045 autophosphorylation, whereby its degradation is triggered through the ubiquitin-proteasome pathway. CONCLUSIONS: Our evidence suggests that T315 is a novel class of anticancer drug that is able to inhibit the growth of EGFR-TKI-resistant lung adenocarcinoma cells by inducing the degradation of EGFR.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Afatinib , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Western Blotting , Proliferación Celular/efectos de los fármacos , Combinación de Medicamentos , Pruebas de Enzimas , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Espectrometría de Masas , Ratones , Mutación/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Proteínas Proto-Oncogénicas c-cbl/efectos de los fármacos , Proteínas Proto-Oncogénicas c-cbl/genética , Quinazolinas/efectos adversos , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Carcinogenesis ; 37(2): 157-162, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26645716

RESUMEN

The objective of this study was to investigate the associations among lung cancer location, and epidermal growth factor receptor (EGFR) mutation status. Treatment-naive, pathologically confirmed lung adenocarcinomas with tumor specimens available for genetic analysis were included from 2011 through 2014. Overall, 1771 patients with lung adenocarcinoma were included for analysis, after excluding those with carcinoma not otherwise specified, or synchronous multiple primary lung cancers. The median age was 64 years, and the female:male and never smoker:ever smoker ratios were 930:855 (52:48%) and 1167:604 (65:35%), respectively. The EGFR mutation rate was 56%. Among patients, 1093 (62%) had primary tumors in the upper lobes. Compared with the characteristics of the EGFR wild-type, tumors with EGFR activating mutations were more common in women (P < 0.001), never smokers (P < 0.001), and in the upper lobes (P = 0.004). Among EGFR activating mutations, compared with the EGFR exon 19 deletion, L858R mutation were more common in women (P = 0.002), never smokers (P = 0.038), and the upper lobes P < 0.0005). The present study is the first to address that different pulmonary lobar locations might harbor different EGFR mutation subtypes. We demonstrated that adenocarcinomas with L858R mutation, rather than exon 19 deletion or wild-type EGFR gene, prefer to locate over the upper lungs. This phenomenon was more significant in females and never-smokers, implying the result of complex interactions between genetic susceptibility and environmental factors. Therefore, EGFR L858R mutation and exon 19 deletion may not be identical disease entity from the point of carcinogenesis.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
BMC Genomics ; 17(1): 632, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519564

RESUMEN

BACKGROUND: Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. DESCRIPTION: To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. CONCLUSIONS: The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the characteristic binding profiles and the density plot of normalized regulatory scores. The iTAR web server is a useful tool in identifying TF target genes from ChIP-seq/ChIP-chip data and discovering biological insights.


Asunto(s)
Inmunoprecipitación de Cromatina , Factor de Transcripción STAT3/metabolismo , Interfaz Usuario-Computador , Algoritmos , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/genética , Análisis de Secuencia de ADN
9.
Plant Biotechnol J ; 14(1): 284-98, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25917508

RESUMEN

Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Dominio MADS/genética , Familia de Multigenes , Orchidaceae/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Bases de Datos Genéticas , Exones/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Intrones/genética , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Motivos de Nucleótidos , Especificidad de Órganos/genética , Filogenia , Dominios Proteicos , Fracciones Subcelulares/metabolismo
10.
Mol Biol Rep ; 43(7): 687-95, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27188428

RESUMEN

Transforming growth factor-ß (TGF-ß)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-ß-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-ß induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-ß-induced SMAD2 phosphorylation and attenuated TGF-ß-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-ß-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-ß-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-ß suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-ß-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos/farmacología , Benzamidas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Factor de Crecimiento Transformador beta/fisiología , Células A549 , Antígenos CD , Cadherinas/genética , Cadherinas/metabolismo , Metilación de ADN , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Fosforilación , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional
11.
Cancer Cell ; 13(1): 48-57, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18167339

RESUMEN

We investigated whether microRNA expression profiles can predict clinical outcome of NSCLC patients. Using real-time RT-PCR, we obtained microRNA expressions in 112 NSCLC patients, which were divided into the training and testing sets. Using Cox regression and risk-score analysis, we identified a five-microRNA signature for the prediction of treatment outcome of NSCLC in the training set. This microRNA signature was validated by the testing set and an independent cohort. Patients with high-risk scores in their microRNA signatures had poor overall and disease-free survivals compared to the low-risk-score patients. This microRNA signature is an independent predictor of the cancer relapse and survival of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/clasificación , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/patología , Masculino , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , Análisis de Regresión , Reproducibilidad de los Resultados
12.
Nucleic Acids Res ; 42(Web Server issue): W137-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24895436

RESUMEN

The DiseaseConnect (http://disease-connect.org) is a web server for analysis and visualization of a comprehensive knowledge on mechanism-based disease connectivity. The traditional disease classification system groups diseases with similar clinical symptoms and phenotypic traits. Thus, diseases with entirely different pathologies could be grouped together, leading to a similar treatment design. Such problems could be avoided if diseases were classified based on their molecular mechanisms. Connecting diseases with similar pathological mechanisms could inspire novel strategies on the effective repositioning of existing drugs and therapies. Although there have been several studies attempting to generate disease connectivity networks, they have not yet utilized the enormous and rapidly growing public repositories of disease-related omics data and literature, two primary resources capable of providing insights into disease connections at an unprecedented level of detail. Our DiseaseConnect, the first public web server, integrates comprehensive omics and literature data, including a large amount of gene expression data, Genome-Wide Association Studies catalog, and text-mined knowledge, to discover disease-disease connectivity via common molecular mechanisms. Moreover, the clinical comorbidity data and a comprehensive compilation of known drug-disease relationships are additionally utilized for advancing the understanding of the disease landscape and for facilitating the mechanism-based development of new drug treatments.


Asunto(s)
Enfermedad/genética , Programas Informáticos , Comorbilidad , Quimioterapia , Expresión Génica , Humanos , Internet , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple
13.
Biochim Biophys Acta ; 1839(7): 579-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24852358

RESUMEN

Aberrant expression levels of transcriptional regulators result in alterations in transcriptional control. STAF65γ is a structural subunit of the GCN5 transcriptional co-activator complex. Reports showed that STAF65γ is highly expressed in several human cancer cells, but the consequences of this aberrant expression pattern remain elusive. Here, we show that the STAF65γ protein is highly expressed in lung adenocarcinoma patients and high levels of STAF65γ correlate with poor prognosis. High levels of STAF65γ cause repression of the c-Myc oncogene through physical association with transcription factor YY1 and co-repressors HDACs. Physical interactions between STAF65γ and class IIa HDACs facilitate nuclear enrichment and regulate the assembly of HDAC complexes. Moreover, SUMOylation of STAF65γ is necessary for maintaining the co-repressor complex containing YY1 and class IIa HDACs at the promoter. Our findings reveal a distinct role of STAF65γ in nuclear import, transcriptional repression, and cell cycle regulation at high levels of expression, which is associated with poor clinical outcomes of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Histona Desacetilasas/genética , Neoplasias Pulmonares/genética , Regiones Promotoras Genéticas , Transactivadores/genética , Transcripción Genética , Transporte Activo de Núcleo Celular/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Represoras/genética , Sumoilación , Factor de Transcripción YY1/genética
14.
BMC Genomics ; 16 Suppl 2: S10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25707505

RESUMEN

BACKGROUND: Protein-protein interactions (PPIs) are key to understanding diverse cellular processes and disease mechanisms. However, current PPI databases only provide low-resolution knowledge of PPIs, in the sense that "proteins" of currently known PPIs generally refer to "genes." It is known that alternative splicing often impacts PPI by either directly affecting protein interacting domains, or by indirectly impacting other domains, which, in turn, impacts the PPI binding. Thus, proteins translated from different isoforms of the same gene can have different interaction partners. RESULTS: Due to the limitations of current experimental capacities, little data is available for PPIs at the resolution of isoforms, although such high-resolution data is crucial to map pathways and to understand protein functions. In fact, alternative splicing can often change the internal structure of a pathway by rearranging specific PPIs. To fill the gap, we systematically predicted genome-wide isoform-isoform interactions (IIIs) using RNA-seq datasets, domain-domain interaction and PPIs. Furthermore, we constructed an III database (IIIDB) that is a resource for studying PPIs at isoform resolution. To discover functional modules in the III network, we performed III network clustering, and then obtained 1025 isoform modules. To evaluate the module functionality, we performed the GO/pathway enrichment analysis for each isoform module. CONCLUSIONS: The IIIDB provides predictions of human protein-protein interactions at the high resolution of transcript isoforms that can facilitate detailed understanding of protein functions and biological pathways. The web interface allows users to search for IIIs or III network modules. The IIIDB is freely available at http://syslab.nchu.edu.tw/IIIDB.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Algoritmos , Empalme Alternativo , Análisis por Conglomerados , Genoma Humano/genética , Humanos , Internet , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Reproducibilidad de los Resultados , Programas Informáticos
15.
BMC Plant Biol ; 15: 100, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25886915

RESUMEN

BACKGROUND: Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. RESULTS: Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. CONCLUSION: The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant evolution.


Asunto(s)
Proteínas de Cloroplastos/genética , Evolución Molecular , Genoma de Planta , Transcriptoma , Viridiplantae/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/metabolismo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Viridiplantae/metabolismo
16.
Am J Respir Crit Care Med ; 190(4): 433-44, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25036006

RESUMEN

RATIONALE: Despite advances in treatment and prognosis of non-small cell lung cancer (NSCLC), patient outcomes are still unsatisfactory. OBJECTIVES: To reduce the morbidity and mortality of patients with NSCLC, a more comprehensive understanding of mechanisms involved in cancer progression is urgently needed. METHODS: By comparison of gene expression profiles in the cell line pair with differential invasion ability, CL1-0 and CL1-5, we found that Shisa3 was highly expressed in the low invasive cells. The effect of Shisa3 on invasion, migration, proliferation, apoptosis, epithelial-mesenchymal transition, and anchorage-independent growth activities in vitro and on tumor growth and metastasis in mice models were examined. The underlying mechanism of Shisa3 was explored by microarray and pathway analysis. Finally, the correlation of Shisa3 expression and clinical outcome was also calculated. MEASUREMENTS AND MAIN RESULTS: We identified Shisa3 as a novel tumor suppressor, which induces ß-catenin degradation resulting in suppression of tumorigenesis and invasion in vitro. Shisa3 decreased the tumor growth in mice with subcutaneous implantation and reduced the number of metastatic nodules in mice with tail vein injection and orthotopic implantation. Shisa3 performs the tumor suppression activity through WNT signaling predicted by microarray analysis. Our data found that Shisa3 accelerates ß-catenin degradation and was positively associated with overall survival and progression-free survival of NSCLC. CONCLUSIONS: Our results reveal that Shisa3 acts as a tumor suppressor by acceleration of ß-catenin degradation and provide new insight for cancer prognosis and therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , beta Catenina/metabolismo , Anciano , Animales , Apoptosis/genética , Western Blotting/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/genética , Proteínas de la Membrana/genética , Ratones , Ratones SCID , Análisis por Micromatrices/métodos , Reacción en Cadena de la Polimerasa/métodos , Transducción de Señal/genética , Taiwán , Células Tumorales Cultivadas , beta Catenina/genética
17.
BMC Plant Biol ; 14: 179, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24989161

RESUMEN

BACKGROUND: The bamboo Bambusa edulis has a long juvenile phase in situ, but can be induced to flower during in vitro tissue culture, providing a readily available source of material for studies on reproductive biology and flowering. In this report, in vitro-derived reproductive and vegetative materials of B. edulis were harvested and used to generate transcriptome databases by use of two sequencing platforms: Illumina and 454. Combination of the two datasets resulted in high transcriptome quality and increased length of the sequence reads. In plants, many MADS genes control flower development, and the ABCDE model has been developed to explain how the genes function together to create the different whorls within a flower. RESULTS: As a case study, published floral development-related OsMADS proteins from rice were used to search the B. edulis transcriptome datasets, identifying 16 B. edulis MADS (BeMADS). The BeMADS gene expression levels were determined qRT-PCR and in situ hybridization. Most BeMADS genes were highly expressed in flowers, with the exception of BeMADS34. The expression patterns of these genes were most similar to the rice homologs, except BeMADS18 and BeMADS34, and were highly similar to the floral development ABCDE model in rice. Transient expression of MADS-GFP proteins showed that only BeMADS1 entered leaf nucleus. BeMADS18, BeMADS4, and BeMADS1 were located in the lemma nucleus. When co-transformed with BeMADS1, BeMADS15, 16, 13, 21, 6, and 7 translocated to nucleus in lemmas, indicating that BeMADS1 is a key factor for subcellular localization of other BeMADS. CONCLUSION: Our study provides abundant B. edulis transcriptome data and offers comprehensive sequence resources. The results, molecular materials and overall strategy reported here can be used for future gene identification and for further reproductive studies in the economically important crop of bamboo.


Asunto(s)
Bambusa/crecimiento & desarrollo , Bambusa/genética , Núcleo Celular/metabolismo , Flores/crecimiento & desarrollo , Genes de Plantas , Proteínas de Dominio MADS/genética , Transcriptoma/genética , Bases de Datos Genéticas , Evolución Molecular , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Proteínas de Dominio MADS/metabolismo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Oryza/genética , Filogenia , Hojas de la Planta/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Reproducción/genética , Análisis de Secuencia de ARN , Fracciones Subcelulares/metabolismo , Transformación Genética
18.
Cell Immunol ; 288(1-2): 15-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24561310

RESUMEN

Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases.


Asunto(s)
Antihelmínticos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Hipersensibilidad/prevención & control , Niclosamida/farmacología , Linfocitos T/efectos de los fármacos , Animales , Antihelmínticos/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/citología , Células Dendríticas/inmunología , Dinitrofluorobenceno/administración & dosificación , Dinitrofluorobenceno/inmunología , Femenino , Regulación de la Expresión Génica , Hipersensibilidad/inmunología , Inmunización , Inmunomodulación/efectos de los fármacos , Inyecciones Intravenosas , Lipopolisacáridos/farmacología , Activación de Linfocitos/efectos de los fármacos , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/inmunología , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Niclosamida/inmunología , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología
19.
Carcinogenesis ; 34(5): 1069-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23306212

RESUMEN

HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate < 0.05) that are dominantly involved in the cell cycle, apoptosis and adhesion-related biological signalling, including mitogen-activated protein kinase, focal adhesion and tight junction pathways, indicating the diverse effects of andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diterpenos/farmacología , Genes Supresores de Tumor/efectos de los fármacos , Proteínas del Choque Térmico HSP40/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Adhesión Celular/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Evaluación Preclínica de Medicamentos/métodos , Proteínas del Choque Térmico HSP40/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Invasividad Neoplásica , Plantas Medicinales , Regiones Promotoras Genéticas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
BMC Genomics ; 14: 310, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23656909

RESUMEN

BACKGROUND: Specific chromatin structures are associated with active or inactive gene transcription. The gene regulatory elements are intrinsically dynamic and alternate between inactive and active states through the recruitment of DNA binding proteins, such as chromatin-remodeling proteins. RESULTS: We developed a unique genome-wide method to discover DNA motifs associated with chromatin accessibility using formaldehyde-assisted isolation of regulatory elements with high-throughput sequencing (FAIRE-seq). We aligned the FAIRE-seq reads to the GM12878 diploid genome and subsequently identified differential chromatin-state regions (DCSRs) using heterozygous SNPs. The DCSR pairs represent the locations of imbalances of chromatin accessibility between alleles and are ideal to reveal chromatin motifs that may directly modulate chromatin accessibility. In this study, we used DNA 6-10mer sequences to interrogate all DCSRs, and subsequently discovered conserved chromatin motifs with significant changes in the occurrence frequency. To investigate their likely roles in biology, we studied the annotated protein associated with each of the top ten chromatin motifs genome-wide, in the intergenic regions and in genes, respectively. As a result, we found that most of these annotated motifs are associated with chromatin remodeling, reflecting their significance in biology. CONCLUSIONS: Our method is the first one using fully phased diploid genome and FAIRE-seq to discover motifs associated with chromatin accessibility. Our results were collected to construct the first chromatin motif database (CMD), providing the potential DNA motifs recognized by chromatin-remodeling proteins and is freely available at http://syslab.nchu.edu.tw/chromatin.


Asunto(s)
Cromatina/genética , Diploidia , Genoma Humano/genética , Motivos de Nucleótidos/genética , Análisis de Secuencia de ADN , Secuencia de Bases , Bases de Datos de Proteínas , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA