Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39250817

RESUMEN

The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, co-immunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology.

2.
Am J Physiol Renal Physiol ; 327(2): F199-F207, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841747

RESUMEN

Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague-Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate, and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate, and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates the loss of renal function.NEW & NOTEWORTHY In humans, an elevated serum concentration of kynurenine has long been associated with negative outcomes in various disease states as well as in aging. However, it has been unknown whether these increased kynurenine levels are mediating the disorders or simply associated with them. This study shows that chronically infusing kynurenine can contribute to the development of hypertension and kidney impairment. The mechanism of this action remains to be determined in future studies.


Asunto(s)
Presión Arterial , Tasa de Filtración Glomerular , Riñón , Quinurenina , Ratas Sprague-Dawley , Triptófano , Animales , Quinurenina/sangre , Quinurenina/metabolismo , Masculino , Presión Arterial/efectos de los fármacos , Triptófano/sangre , Triptófano/metabolismo , Tasa de Filtración Glomerular/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/fisiopatología , Infusiones Intravenosas , Frecuencia Cardíaca/efectos de los fármacos , Ratas , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/sangre
3.
Kidney Int ; 106(1): 98-114, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521405

RESUMEN

Epigenetic regulations, including DNA methylation, are critical to the development and progression of kidney fibrosis, but the underlying mechanisms remain elusive. Here, we show that fibrosis of the mouse kidney was associated with the induction of DNA methyltransferases and increases in global DNA methylation and was alleviated by the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza). Genome-wide analysis demonstrated the hypermethylation of 94 genes in mouse unilateral ureteral obstruction kidneys, which was markedly reduced by 5-Aza. Among these genes, Hoxa5 was hypermethylated at its gene promoter, and this hypermethylation was associated with reduced HOXA5 expression in fibrotic mouse kidneys after ureteral obstruction or unilateral ischemia-reperfusion injury. 5-Aza prevented Hoxa5 hypermethylation, restored HOXA5 expression, and suppressed kidney fibrosis. Downregulation of HOXA5 was verified in human kidney biopsies from patients with chronic kidney disease and correlated with the increased kidney fibrosis and DNA methylation. Kidney fibrosis was aggravated by conditional knockout of Hoxa5 and alleviated by conditional knockin of Hoxa5 in kidney proximal tubules of mice. Mechanistically, we found that HOXA5 repressed Jag1 transcription by directly binding to its gene promoter, resulting in the suppression of JAG1-NOTCH signaling during kidney fibrosis. Thus, our results indicate that loss of HOXA5 via DNA methylation contributes to fibrogenesis in kidney diseases by inducing JAG1 and consequent activation of the NOTCH signaling pathway.


Asunto(s)
Metilación de ADN , Fibrosis , Proteínas de Homeodominio , Proteína Jagged-1 , Regiones Promotoras Genéticas , Receptores Notch , Transducción de Señal , Obstrucción Ureteral , Animales , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Masculino , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Obstrucción Ureteral/genética , Obstrucción Ureteral/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Riñón/patología , Riñón/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Epigénesis Genética , Enfermedades Renales/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Factores de Transcripción
4.
Small ; : e2400690, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210651

RESUMEN

Developing flexible energy storage devices with good deformation resistance under extreme operating conditions is highly desirable yet remains very challenging. Super-elastic MXene-enhanced polyvinyl alcohol/polyaniline (AMPH) hydrogel electrodes are designed and synthesized through vertical gradient ice templating-induced polymerization. This approach allows for the unidirectional growth of polyaniline (PANI) and 2D MXene layers along the elongated arrayed ice crystals in a controlled manner. The resulting 3D unidirectional AMPH hydrogel exhibits inherent stretchability and electronic conductivity, with the ability to completely recover its shape even under extreme conditions, such as 500% tensile strain, 50% compressive strain. The presence of MXene in the hydrogel electrode enhances its resilience to mechanical compression and stretching, resulting in less variation in resistance. AMPH has a specific capacitance of 130.68 and 88.02 mF cm-2 at a current density of 0.2 and 2 mA cm-2, respectively, and retains 90% and 70% of its original capacitance at elongation of 100% and 200%, respectively. AMPH-based supercapacitors demonstrate exceptional performance in high salinity environments and wide temperature ranges (-30-80 °C). The high electrochemical activity, temperature tolerance, and mechanical robustness of AMPH-based supercapacitor endow it promising as the power supply for flexible and wearable electronic devices.

5.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612520

RESUMEN

Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius.


Asunto(s)
Arabidopsis , Genes myb , Factores de Transcripción/genética , Filogenia , Metabolismo Secundario , Arabidopsis/genética , Flavonoides
6.
Exp Eye Res ; 226: 109306, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372215

RESUMEN

Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.


Asunto(s)
Marcación de Gen , Tamoxifeno , Ratones , Animales , Ratones Transgénicos , Tamoxifeno/farmacología , Recombinasas
7.
J Am Soc Nephrol ; 33(4): 769-785, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35115326

RESUMEN

BACKGROUND: Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS: In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS: We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS: Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Animales , Humanos , Isquemia/complicaciones , Riñón/patología , Médula Renal/irrigación sanguínea , Lipopolisacáridos , Ratas , Circulación Renal/fisiología , Reperfusión/efectos adversos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
8.
Kidney Int ; 102(1): 121-135, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483522

RESUMEN

Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Doxorrubicina , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Hipertrofia , Mamíferos/metabolismo , Ratones , Fosforilación , Podocitos/patología , Proteínas Serina-Treonina Quinasas , Proteína S6 Ribosómica/metabolismo
9.
J Cell Physiol ; 235(12): 9958-9973, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32474911

RESUMEN

Nephron loss stimulates residual functioning nephrons to undergo compensatory growth. Excessive nephron growth may be a maladaptive response that sets the stage for progressive nephron damage, leading to kidney failure. To date, however, the mechanism of nephron growth remains incompletely understood. Our previous study revealed that class III phosphatidylinositol-3-kinase (Pik3c3) is activated in the remaining kidney after unilateral nephrectomy (UNX)-induced nephron loss, but previous studies failed to generate a Pik3c3 gene knockout animal model. Global Pik3c3 deletion results in embryonic lethality. Given that renal proximal tubule cells make up the bulk of the kidney and undergo the most prominent hypertrophic growth after UNX, in this study we used Cre-loxP-based approaches to demonstrate for the first time that tamoxifen-inducible SLC34a1 promoter-driven CreERT2 recombinase-mediated downregulation of Pik3c3 expression in renal proximal tubule cells alone is sufficient to inhibit UNX- or amino acid-induced hypertrophic nephron growth. Furthermore, our mechanistic studies unveiled that the SLC34a1-CreERT2 recombinase-mediated Pik3c3 downregulation inhibited UNX- or amino acid-stimulated lysosomal localization and signaling activation of mechanistic target of rapamycin complex 1 (mTORC1) in the renal proximal tubules. Moreover, our additional cell culture experiments using RNAi confirmed that knocking down Pik3c3 expression inhibited amino acid-stimulated mTORC1 signaling and blunted cellular growth in primary cultures of renal proximal tubule cells. Together, both our in vivo and in vitro experimental results indicate that Pik3c3 is a major mechanistic mediator responsible for sensing amino acid availability and initiating hypertrophic growth of renal proximal tubule cells by activation of the mTORC1-S6K1-rpS6 signaling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/genética , Túbulos Renales Proximales/crecimiento & desarrollo , Riñón/efectos de los fármacos , Nefronas/crecimiento & desarrollo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Animales , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Integrasas/genética , Riñón/crecimiento & desarrollo , Riñón/patología , Riñón/cirugía , Túbulos Renales Proximales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Nefrectomía , Nefronas/metabolismo , Fosforilación/genética , Proteína-Lisina 6-Oxidasa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
10.
Am J Physiol Renal Physiol ; 318(3): F628-F638, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904289

RESUMEN

Excessive compensatory nephron hypertrophy (CNH) has been implicated in setting the stage for progressive nephron damage. Lack of a class III phosphatidylinositol 3-kinase (Pik3c3) inhibitor suitable for using in animals and lack of a Pik3c3-deficient animal model preclude the possibility of conclusively defining a role for Pik3c3 in CNH in previous studies. Here, we report that insertion of an Frt-flanked PGK-Neo cassette into intron 19 of the mouse Pik3c3 gene resulted in a hypomorphic allele. This allowed us to create a unique mouse model and provide the first definitive genetic evidence demonstrating whether Pik3c3 is essential for the regulation of CNH. Our results indicate that homozygous Pik3c3 hypomorphic (Pik3c3Hypo/Hypo) mice express significantly low levels of Pik3c3 than heterozygous Pik3c3 hypomorphic (Pik3c3Hypo/WT) littermates, which already express a lower level of Pik3c3 than wild-type (Pik3c3WT/WT) littermates. Interestingly, after unilateral nephrectomy (UNX), Pik3c3Hypo/Hypo mice develop a significantly lower degree of CNH than Pik3c3WT/WT mice and Pik3c3Hypo/WT mice, as revealed by measurement of kidney weight, kidney-to-body weight ratio, renal protein-to-DNA ratio, and morphometric analysis of proximal tubular and glomerular size. Mechanistically, UNX-induced mammalian target of rapamycin complex 1 (mTORC1) signaling to phosphorylation of ribosomal protein S6 (rpS6) in the remaining kidney was markedly inhibited in Pik3c3 hypomorphic mice. In conclusion, the present study reports a Pik3c3 hypomorphic mouse model and provides the first definitive evidence that Pik3c3 controls the degree of compensatory nephron hypertrophy. In addition, our signaling data provide the first definitive in vivo proof that Pik3c3 functions upstream of the mTORC1-S6 kinase 1-rpS6 pathway in the regulation of compensatory nephron hypertrophy.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Nefronas/patología , Animales , Fosfatidilinositol 3-Quinasas Clase III/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Hipertrofia , Intrones/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutagénesis Insercional , Nefrectomía , Nefronas/metabolismo , Transducción de Señal/fisiología
11.
Kidney Int ; 95(6): 1359-1372, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30905471

RESUMEN

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Glomerulonefritis/tratamiento farmacológico , Glomérulos Renales/efectos de los fármacos , Péptidos Cíclicos/administración & dosificación , Proteinuria/tratamiento farmacológico , Animales , Nitrógeno de la Urea Sanguínea , Línea Celular , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Glomerulonefritis/sangre , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Humanos , Inyecciones Intraperitoneales , Glomérulos Renales/citología , Glomérulos Renales/patología , Ratones , Óxido Nítrico/metabolismo , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteinuria/sangre , Proteinuria/inmunología , Proteinuria/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Cell Mol Life Sci ; 75(4): 669-688, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28871310

RESUMEN

Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.


Asunto(s)
Autofagia/fisiología , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/terapia , Terapias en Investigación , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Homeostasis/fisiología , Humanos , Riñón/metabolismo , Riñón/fisiología , Podocitos/metabolismo , Podocitos/fisiología , Transducción de Señal/fisiología , Terapias en Investigación/métodos , Terapias en Investigación/tendencias
13.
Am J Physiol Renal Physiol ; 315(6): F1822-F1832, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30280598

RESUMEN

Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2-3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.


Asunto(s)
ARN Helicasas DEAD-box/deficiencia , Nefropatías Diabéticas/enzimología , Túbulos Renales Proximales/enzimología , Nefritis/enzimología , Insuficiencia Renal Crónica/enzimología , Ribonucleasa III/deficiencia , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Obstrucción Ureteral/enzimología , Animales , ARN Helicasas DEAD-box/genética , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Túbulos Renales Proximales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Nefritis/etiología , Nefritis/genética , Nefritis/patología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Ribonucleasa III/genética , Transducción de Señal , Regulación hacia Arriba , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
14.
Am J Physiol Renal Physiol ; 314(1): F81-F88, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971990

RESUMEN

Hyperinsulinemia has been hypothesized to cause hypertension in obesity, type 2 diabetes, and metabolic syndrome through a renal mechanism. However, it has been challenging to isolate renal mechanisms in chronic experimental models due, in part, to technical difficulties. In this study, we tested the hypothesis that a renal mechanism underlies insulin hypertension. We developed a novel technique to permit continuous insulin infusion through the renal artery in conscious rats for 7 days. Mean arterial pressure increased by ~10 mmHg in rats that were infused intravenously (IV) with insulin and glucose. Renal artery doses were 20% of the intravenous doses and did not raise systemic insulin levels or cause differences in blood glucose. The increase in blood pressure was not different from the IV group. Mean arterial pressure did not change in vehicle-infused rats, and there were no differences in renal injury scoring due to the renal artery catheter. Glomerular filtration rate, plasma renin activity, and urinary sodium excretion did not differ between groups at baseline and did not change significantly with insulin infusion. Thus, by developing a novel approach for chronic, continuous renal artery insulin infusion, we provided new evidence that insulin causes hypertension in rats through actions initiated within the kidney.


Asunto(s)
Presión Arterial/efectos de los fármacos , Tasa de Filtración Glomerular/efectos de los fármacos , Hipertensión/etiología , Insulina/farmacología , Circulación Renal/efectos de los fármacos , Animales , Insulina/sangre , Masculino , Nefrectomía/métodos , Ratas Sprague-Dawley
15.
Clin Sci (Lond) ; 132(11): 1179-1197, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29650676

RESUMEN

Sodium bicarbonate (NaHCO3) slows the decline in kidney function in patients with chronic kidney disease (CKD), yet the mechanisms mediating this effect remain unclear. The Dahl salt-sensitive (SS) rat develops hypertension and progressive renal injury when fed a high salt diet; however, the effect of alkali loading on kidney injury has never been investigated in this model. We hypothesized that NaHCO3 protects from the development of renal injury in Dahl salt-sensitive rats via luminal alkalization which limits the formation of tubular casts, which are a prominent pathological feature in this model. To examine this hypothesis, we determined blood pressure and renal injury responses in Dahl SS rats drinking vehicle (0.1 M NaCl) or NaHCO3 (0.1 M) solutions as well as in Dahl SS rats lacking the voltage-gated proton channel (Hv1). We found that oral NaHCO3 reduced tubular NH4+ production, tubular cast formation, and interstitial fibrosis in rats fed a high salt diet for 2 weeks. This effect was independent of changes in blood pressure, glomerular injury, or proteinuria and did not associate with changes in renal inflammatory status. We found that null mutation of Hv1 also limited cast formation in Dahl SS rats independent of proteinuria or glomerular injury. As Hv1 is localized to the luminal membrane of TAL, our data suggest that alkalization of the luminal fluid within this segment limits cast formation in this model. Reduced cast formation, secondary to luminal alkalization within TAL segments may mediate some of the protective effects of alkali loading observed in CKD patients.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/prevención & control , Túbulos Renales/patología , Proteinuria/prevención & control , Bicarbonato de Sodio/uso terapéutico , Ácidos/orina , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Hemodinámica/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Canales Iónicos/deficiencia , Canales Iónicos/genética , Canales Iónicos/fisiología , Masculino , Proteinuria/metabolismo , Ratas Endogámicas Dahl , Ratas Mutantes , Bicarbonato de Sodio/farmacología , Cloruro de Sodio Dietético/farmacología , Cloruro de Sodio Dietético/toxicidad
16.
J Am Soc Nephrol ; 28(4): 1131-1144, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27799485

RESUMEN

Nephrotoxicity is a major adverse effect in cisplatin chemotherapy, and renoprotective approaches are unavailable. Recent work unveiled a critical role of protein kinase Cδ (PKCδ) in cisplatin nephrotoxicity and further demonstrated that inhibition of PKCδ not only protects kidneys but enhances the chemotherapeutic effect of cisplatin in tumors; however, the underlying mechanisms remain elusive. Here, we show that cisplatin induced rapid activation of autophagy in cultured kidney tubular cells and in the kidneys of injected mice. Cisplatin also induced the phosphorylation of mammalian target of rapamycin (mTOR), p70S6 kinase downstream of mTOR, and serine/threonine-protein kinase ULK1, a component of the autophagy initiating complex. In vitro, pharmacologic inhibition of mTOR, directly or through inhibition of AKT, enhanced autophagy after cisplatin treatment. Notably, in both cells and kidneys, blockade of PKCδ suppressed the cisplatin-induced phosphorylation of AKT, mTOR, p70S6 kinase, and ULK1 resulting in upregulation of autophagy. Furthermore, constitutively active and inactive forms of PKCδ respectively enhanced and suppressed cisplatin-induced apoptosis in cultured cells. In mechanistic studies, we showed coimmunoprecipitation of PKCδ and AKT from lysates of cisplatin-treated cells and direct phosphorylation of AKT at serine-473 by PKCδin vitro Finally, administration of the PKCδ inhibitor rottlerin with cisplatin protected against cisplatin nephrotoxicity in wild-type mice, but not in renal autophagy-deficient mice. Together, these results reveal a pathway consisting of PKCδ, AKT, mTOR, and ULK1 that inhibits autophagy in cisplatin nephrotoxicity. PKCδ mediates cisplatin nephrotoxicity at least in part by suppressing autophagy, and accordingly, PKCδ inhibition protects kidneys by upregulating autophagy.


Asunto(s)
Apoptosis , Autofagia/fisiología , Enfermedades Renales/patología , Riñón/citología , Proteína Quinasa C-delta/fisiología , Animales , Células Cultivadas , Cisplatino/toxicidad , Enfermedades Renales/inducido químicamente , Masculino , Ratones
17.
Am J Physiol Renal Physiol ; 313(1): F74-F84, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404589

RESUMEN

Podocytes are highly differentiated epithelial cells wrapping glomerular capillaries to form the filtration barrier in kidneys. As such, podocyte injury or dysfunction is a critical pathogenic event in glomerular disease. Autophagy plays an important role in the maintenance of the homeostasis and function of podocytes. However, it is less clear whether and how autophagy contributes to podocyte injury in glomerular disease. Here, we have examined the role of autophagy in adriamycin-induced nephropathy, a classic model of glomerular disease. We show that autophagy was induced by adriamycin in cultured podocytes in vitro and in podocytes in mice. In cultured podocytes, activation of autophagy with rapamycin led to the suppression of adriamycin-induced apoptosis, whereas inhibition of autophagy with chloroquine enhanced podocyte apoptosis during adriamycin treatment. To determine the role of autophagy in vivo, we established an inducible podocyte-specific autophagy-related gene 7 knockout mouse model (Podo-Atg7-KO). Compared with wild-type littermates, Podo-Atg7-KO mice showed higher levels of podocyte injury, glomerulopathy, and proteinuria during adriamycin treatment. Together, these observations support an important role of autophagy in protecting podocytes under the pathological conditions of glomerular disease, suggesting the therapeutic potential of autophagy induction.


Asunto(s)
Antibióticos Antineoplásicos , Proteína 7 Relacionada con la Autofagia/metabolismo , Autofagia , Doxorrubicina , Podocitos/metabolismo , Insuficiencia Renal Crónica/prevención & control , Animales , Apoptosis , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/deficiencia , Proteína 7 Relacionada con la Autofagia/genética , Células Cultivadas , Citoprotección , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/inducido químicamente , Proteinuria/metabolismo , Proteinuria/patología , Proteinuria/prevención & control , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Sirolimus/farmacología , Factores de Tiempo
18.
Am J Physiol Renal Physiol ; 312(6): F963-F970, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356285

RESUMEN

Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing.


Asunto(s)
Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Exosomas/metabolismo , Túbulos Renales/metabolismo , Cicatrización de Heridas , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Receptores ErbB/antagonistas & inhibidores , Exosomas/patología , Gefitinib , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Ratones , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Quinazolinas/farmacología , Transducción de Señal , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos
19.
Kidney Int ; 92(5): 1194-1205, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28709638

RESUMEN

DNA methylation is an epigenetic mechanism that regulates gene transcription without changing primary nucleotide sequences. In mammals, DNA methylation involves the covalent addition of a methyl group to the 5-carbon position of cytosine by DNA methyltransferases (DNMTs). The change of DNA methylation and its pathological role in acute kidney injury (AKI) remain largely unknown. Here, we analyzed genome-wide DNA methylation during cisplatin-induced AKI by reduced representation bisulfite sequencing. This technique identified 215 differentially methylated regions between the kidneys of control and cisplatin-treated animals. While most of the differentially methylated regions were in the intergenic, intronic, and coding DNA sequences, some were located in the promoter or promoter-regulatory regions of 15 protein-coding genes. To determine the pathological role of DNA methylation, we initially examined the effects of the DNA methylation inhibitor 5-aza-2'-deoxycytidine and showed it increased cisplatin-induced apoptosis in a rat kidney proximal tubular cell line. We further established a kidney proximal tubule-specific DNMT1 (PT-DNMT1) knockout mouse model, which showed more severe AKI during cisplatin treatment than wild-type mice. Finally, interferon regulatory factor 8 (Irf8), a pro-apoptotic factor, was identified as a hypomethylated gene in cisplatin-induced AKI, and this hypomethylation was associated with a marked induction of Irf8. In the rat kidney proximal tubular cells, the knockdown of Irf8 suppressed cisplatin-induced apoptosis, supporting a pro-death role of Irf8 in renal tubular cells. Thus, DNA methylation plays a protective role in cisplatin-induced AKI by regulating specific genes, such as Irf8.


Asunto(s)
Lesión Renal Aguda/genética , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Factores Reguladores del Interferón/genética , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1/genética , Decitabina , Modelos Animales de Enfermedad , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Genoma , Humanos , Factores Reguladores del Interferón/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Ratas , Análisis de Secuencia de ADN/métodos
20.
J Am Soc Nephrol ; 27(4): 1145-58, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26296742

RESUMEN

The molecular mechanisms underlying renal growth and renal growth-induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys.


Asunto(s)
Eliminación de Gen , Riñón/patología , Proteína S6 Ribosómica/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Ratones , Fosforilación , Proteína 1 del Complejo de la Esclerosis Tuberosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA