Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 26(9): 2041-2050, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31785014

RESUMEN

A green and convenient solid-state method assisted by mechanical energy is employed for the synthesis of boron (B) and nitrogen (N) co-doped porous carbons (B,N-Cs). Glutamic acid (Glu) and boric acid (H3 BO3 ) are used as the N-containing carbon precursor and boron source, respectively. This method is easy to perform and proved to be efficient towards co-doping B and N into the carbon matrix with high contents of B (7 atom %) and N (10 atom %). By adjusting the molar ratio of H3 BO3 to Glu, the surface chemical states of B and N could be readily modulated. When increasing H3 BO3 dosage, the pore size of B,N-Cs could be tuned ranging from micropores to mesopores with a Brunauer-Emmett-Teller (BET) surface area up to 940 m2 g-1 . Finally, the B,N-Cs were applied as metal-free catalysts for the cycloaddition of CO2 to epoxides, which outperform the N-doped carbon catalyst (NC-900) and the physically mixed catalyst of NC-900/B4 C. The enhanced activity is attributed to the cooperative effect between B and N sites. X-ray photoelectron spectroscopy (XPS) analysis reveals that BN3 in the B,N-Cs serves as a critical active site for the cooperative catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA