Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082154

RESUMEN

Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.


Asunto(s)
Diamante/química , Magnetismo/métodos , Microscopía Fluorescente/métodos , Neoplasias/patología , Puntos Cuánticos/química , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas/química , Nitrógeno/química
2.
Nano Lett ; 23(7): 2636-2643, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36971403

RESUMEN

Biomolecular interactions compose a fundamental element of all life forms and are the biological basis of many biomedical assays. However, current methods for detecting biomolecular interactions have limitations in sensitivity and specificity. Here, using nitrogen-vacancy centers in diamond as quantum sensors, we demonstrate digital magnetic detection of biomolecular interactions with single magnetic nanoparticles (MNPs). We first developed a single-particle magnetic imaging (SiPMI) method on 100 nm-sized MNPs with negligible magnetic background, high signal stability, and accurate quantification. The single-particle method was performed on biotin-streptavidin interactions and DNA-DNA interactions in which a single-base mismatch was specifically differentiated. Subsequently, SARS-CoV-2-related antibodies and nucleic acids were examined by a digital immunomagnetic assay derived from SiPMI. In addition, a magnetic separation process improved the detection sensitivity and dynamic range by more than 3 orders of magnitude and also the specificity. This digital magnetic platform is applicable to extensive biomolecular interaction studies and ultrasensitive biomedical assays.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , ADN , Fenómenos Magnéticos
3.
Nano Lett ; 22(5): 1851-1857, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35175061

RESUMEN

Tightly focusing a spatially modulated laser beam lays the foundations for advanced optical techniques, such as a holographic optical tweezer and deterministic super-resolution imaging. Precisely mapping the subwavelength features of those highly confined fields is critical to improving the spatial resolution, especially in highly scattering biotissues. However, current techniques characterizing focal fields are mostly limited to conditions such as under a vacuum and on a glass surface. An optical probe with low cytotoxicity and resistance to autofluorescence is the key to achieving in vivo applications. Here, we use a newly emerging quantum reference beacon, the nitrogen-vacancy (NV) center in the nanodiamond, to characterize the focal field of the near-infrared (NIR) laser focus in Caenorhabditis elegans (C. elegans). This biocompatible background-free focal field mapping technique has the potential to optimize in vivo optical imaging and manipulation.


Asunto(s)
Caenorhabditis elegans , Nanodiamantes , Animales , Luz , Nitrógeno , Pinzas Ópticas
4.
Nat Methods ; 15(9): 749, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30108338

RESUMEN

In the version of this paper originally published online, the ORCID ID for Peter Z. Qin was incorrectly assigned to Zhuoyang Qin. In addition, the ORCID for Fazhan Shi was omitted. These errors have been corrected in the print, PDF, and HTML versions of the paper.

5.
Nat Methods ; 15(9): 697-699, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082898

RESUMEN

Magnetic resonance spectroscopy of single biomolecules under near-physiological conditions could substantially advance understanding of their biological function, but this approach remains very challenging. Here we used nitrogen-vacancy centers in diamonds to detect electron spin resonance spectra of individual, tethered DNA duplexes labeled with a nitroxide spin label in aqueous buffer solutions at ambient temperatures. This work paves the way for magnetic resonance studies on single biomolecules and their intermolecular interactions in native-like environments.


Asunto(s)
ADN/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Imagen Individual de Molécula/métodos , Soluciones , Agua/química
6.
Proc Natl Acad Sci U S A ; 111(43): 15432-7, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25301900

RESUMEN

Despite the increasing number of regulatory proteins identified in clathrin-independent endocytic (CIE) pathways, our understanding of the exact functions of these proteins and the sequential manner in which they function remains limited. In this study, using the Caenorhabditis elegans intestine as a model, we observed a unique structure of interconnected endosomal tubules, which is required for the basolateral recycling of several CIE cargoes including hTAC, GLUT1, and DAF-4. SEC-10 is a subunit of the octameric protein complex exocyst. Depleting SEC-10 and several other exocyst components disrupted the endosomal tubules into various ring-like structures. An epistasis analysis further suggested that SEC-10 operates at the intermediate step between early endosomes and recycling endosomes. The endosomal tubules were also sensitive to inactivation of the Rab GTPase RAB-10 and disruption of microtubules. Taken together, our data suggest that SEC-10 coordinates with RAB-10 and microtubules to form the endosomal tubular network for efficient recycling of particular CIE cargoes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Transporte Biológico , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Lisosomas/metabolismo , Fusión de Membrana , Microtúbulos/metabolismo , Mutación/genética , Proteínas de Transporte Vesicular
7.
Nat Commun ; 14(1): 6278, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805509

RESUMEN

An ultimate goal of electron paramagnetic resonance (EPR) spectroscopy is to analyze molecular dynamics in place where it occurs, such as in a living cell. The nanodiamond (ND) hosting nitrogen-vacancy (NV) centers will be a promising EPR sensor to achieve this goal. However, ND-based EPR spectroscopy remains elusive, due to the challenge of controlling NV centers without well-defined orientations inside a flexible ND. Here, we show a generalized zero-field EPR technique with spectra robust to the sensor's orientation. The key is applying an amplitude modulation on the control field, which generates a series of equidistant Floquet states with energy splitting being the orientation-independent modulation frequency. We acquire the zero-field EPR spectrum of vanadyl ions in aqueous glycerol solution with embedded single NDs, paving the way towards in vivo EPR.

8.
Channels (Austin) ; 13(1): 483-497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31679457

RESUMEN

KCNE ß-subunits play critical roles in modulating cardiac voltage-gated potassium channels. Among them, KCNE1 associates with KCNQ1 channel to confer a slow-activated IKs current, while KCNE2 functions as a dominant negative modulator to suppress the current amplitude of KCNQ1. Any anomaly in these channels will lead to serious myocardial diseases, such as the long QT syndrome (LQTS). Trafficking defects of KCNE1 have been reported to account for the pathogenesis of LQT5. However, the molecular mechanisms underlying KCNE forward trafficking remain elusive. Here, we describe an arginine/lysine-based motif ([R/K](S)[R/K][R/K]) in the proximal C-terminus regulating the endoplasmic reticulum (ER) export of KCNE1 and KCNE2 in HEK293 cells. Notably, this motif is highly conserved in the KCNE family. Our results indicate that the forward trafficking of KCNE2 controlled by the motif (KSKR) is essential for suppressing the cell surface expression and current amplitude of KCNQ1. Unlike KCNE2, the motif (RSKK) in KCNE1 plays important roles in modulating the gating of KCNQ1 in addition to mediating the ER export of KCNE1. Furthermore, truncations of the C-terminus did not reduce the apparent affinity of KCNE2 for KCNQ1, demonstrating that the rigid C-terminus of KCNE2 may not physically interact with KCNQ1. In contrast, the KCNE1 C-terminus is critical for its interaction with KCNQ1. These results contribute to the understanding of the mechanisms of KCNE1 and KCNE2 membrane targeting and how they coassemble with KCNQ1 to regulate the channels activity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencias de Aminoácidos , Arginina/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Lisina/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Transporte de Proteínas
9.
Sci Adv ; 5(4): eaau8038, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30989109

RESUMEN

The in situ measurement of the distribution of biomolecules inside a cell is one of the important goals in life science. Among various imaging techniques, magnetic imaging (MI) based on the nitrogen-vacancy (NV) center in diamond provides a powerful tool for the biomolecular research, while the nanometer-scale MI of intracellular proteins remains a challenge. Here, we use ferritin as a demonstration to realize the MI of endogenous proteins in a single cell using the NV center as the sensor. With the scanning, intracellular ferritins are imaged with a spatial resolution of ca. 10 nm, and ferritin-containing organelles are colocalized by correlative MI and electron microscopy. The approach paves the way for nanoscale MI of intracellular proteins.


Asunto(s)
Ferritinas/metabolismo , Fenómenos Magnéticos , Imagen Molecular , Análisis de la Célula Individual , Células Cultivadas , Células Hep G2 , Humanos , Imagen Molecular/métodos , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA