Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(27): 9975-9983, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37378414

RESUMEN

In the CO2 capture process, solid acid catalysts have been widely adopted to decrease energy consumption in the amine regeneration process owing to abundant acid sites. However, acid sites unavoidably degenerate in the basic amine solution. To address the challenge, nonacid carbon materials including carbon molecular sieves, porous carbon, carbon nanotubes, and graphene are first proposed to catalyze amine regeneration. It is found that carbon materials can significantly increase the CO2 desorption amount by 47.1-72.3% and reduce energy consumption by 32-42%. In 20 stability experiments, CO2 loading was stable with the max difference value of 0.01 mol CO2/mol monoethanolamine (MEA), and no obvious increase in the relative heat duty (the maximum difference is 4%) occurred. The stability of carbon materials is superior to excellent solid acid catalysts, and the desorption performance is comparable. According to the results of theoretical calculation and experimental characterization, the electron-transfer mechanism of nonacid carbon materials is proposed, which is not only beneficial for MEA regeneration but also the probable reason for the stable catalytic activity. Owing to the excellent catalytic performance of carbon nanotube (CNT) in the HCO3- decomposition, nonacid carbon materials are quite promising to enhance the desorption performance of novel blend amines, which will further reduce the cost of carbon capture in the industry. This study provides a new strategy to develop stable catalysts used for amine energy-efficient regeneration.


Asunto(s)
Etanolamina , Nanotubos de Carbono , Dióxido de Carbono , Aminas , Fenómenos Físicos
2.
Ecotoxicol Environ Saf ; 241: 113757, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714482

RESUMEN

Reprogramming of cellular metabolism is a vital event during tumorigenesis. The role of glycolysis in malignant progression promoted by hydroquinone (HQ), one of the metabolic products of benzene, remains to be understood. Recently, we reported the overexpression of sirtuin 1 (SIRT1) in HQ-enhanced malignant progression of TK6 cells and hypothesized that SIRT1 might contribute to glycolysis and favor tumorigenesis. Our data showed that acute exposure of TK6 cells to HQ for 48 h inhibited glycolysis, as indicated by reduction in glucose consumption, lactate production, hexokinase activity, and the expression of SIRT1 and glycolytic enzymes, including HIF-1α, hexokinase-2 (HK-2), ENO-1, glucose transporter 1 (Glut-1), and lactic dehydrogenase A (LDHA). Knockdown of SIRT1 or inhibition of glycolysis using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) downregulated the levels of SIRT1 and glycolytic enzymes and significantly enhanced HQ-induced cell apoptosis, although knockdown of SIRT1 or 2-DG alone had little effect on apoptosis. Furthermore, immunofluorescence and Co-IP assays demonstrated that SIRT1 regulated the expression of HK-2, and HQ treatment caused a decrease in SIRT1 and HK-2 binding to mitochondria. Importantly, we found that glycolysis was promoted with increasing HQ treatment weeks. Long-term HQ exposure increased the expression of SIRT1 and several glycolytic enzymes and promoted malignant cell progression. Moreover, compared with the PBS group, glucose consumption and lactate production increased after 10 weeks of HQ exposure, and the protein levels of SIRT1 and HK-2 were increased after 15 weeks of HQ exposure, while those of Glut-1, ENO-1, and LDHA were elevated. In addition, SIRT1 knockdown HQ 19 cells exhibited decreased lactate production, glucose consumption, glycolytic enzymes expression, cell growth, and tumor formation in nude mice. Our findings identify the high expression of SIRT1 as a strong oncogenic driver that positively regulates HK-2 and promotes glycolysis in HQ-accelerated malignant progression of TK6 cells.


Asunto(s)
Hexoquinasa , Sirtuina 1 , Animales , Carcinogénesis , Glucosa , Glucólisis , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Hidroquinonas/toxicidad , Lactatos , Ratones , Ratones Desnudos , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
J Cell Mol Med ; 24(2): 1906-1916, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31840411

RESUMEN

Meckel syndrome (MKS) is a pre- or perinatal multisystemic ciliopathic lethal disorder with an autosomal recessive mode of inheritance. Meckel syndrome is usually manifested with meningo-occipital encephalocele, polycystic kidney dysplasia, postaxial polydactyly and hepatobiliary ductal plate malformation. Germline variants in CEP290 cause MKS4. In this study, we investigated a 35-years-old Chinese female who was 17+1 weeks pregnant. She had a history of adverse pregnancy of having foetus with multiple malformations. We performed ultrasonography and identified the foetus with occipital meningoencephalocele and enlarged cystic dysplastic kidneys. So, she decided to terminate her pregnancy and further genetic molecular analysis was performed. We identified the aborted foetus without postaxial polydactyly. Histological examination of foetal kidney showed cysts in kidney and thinning of the renal cortex with glomerular atrophy. Whole exome sequencing identified a novel homozygous variant (c.2144T>G; p.L715* ) in exon 21 of the CEP290 in the foetus. Sanger sequencing confirmed that both the parents of the foetus were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters of the foetus as well as in the 100 healthy individuals. Western blot analysis showed that this variant leads to the formation of truncated CEP290 protein with the molecular weight of 84 KD compared with the wild-type CEP290 protein of 290 KD. Hence, it is a loss-of-function variant. We also found that the mutant cilium appears longer in length than the wild-type cilium. Our present study reported the first variant of CEP290 associated with MKS4 in Chinese population.


Asunto(s)
Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto/genética , Encefalocele/genética , Secuenciación del Exoma , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Retinitis Pigmentosa/genética , Adulto , Pueblo Asiatico/genética , Secuencia de Bases , Encefalocele/patología , Femenino , Feto/diagnóstico por imagen , Homocigoto , Humanos , Riñón/patología , Masculino , Linaje , Ultrasonografía Prenatal
4.
Genet Med ; 22(3): 500-510, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31447483

RESUMEN

PURPOSE: Emerging studies suggest that low-pass genome sequencing (GS) provides additional diagnostic yield of clinically significant copy-number variants (CNVs) compared with chromosomal microarray analysis (CMA). However, a prospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of low-pass GS compared with CMA is warranted. METHODS: A total of 1023 women undergoing prenatal diagnosis were enrolled. Each sample was subjected to low-pass GS and CMA for CNV analysis in parallel. CNVs were classified according to guidelines of the American College of Medical Genetics and Genomics. RESULTS: Low-pass GS not only identified all 124 numerical disorders or pathogenic or likely pathogenic (P/LP) CNVs detected by CMA in 121 cases (11.8%, 121/1023), but also defined 17 additional and clinically relevant P/LP CNVs in 17 cases (1.7%, 17/1023). In addition, low-pass GS significantly reduced the technical repeat rate from 4.6% (47/1023) for CMA to 0.5% (5/1023) and required less DNA (50 ng) as input. CONCLUSION: In the context of prenatal diagnosis, low-pass GS identified additional and clinically significant information with enhanced resolution and increased sensitivity of detecting mosaicism as compared with the CMA platform used. This study provides strong evidence for applying low-pass GS as an alternative prenatal diagnostic test.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , Análisis por Micromatrices/normas , Diagnóstico Prenatal/normas , Variaciones en el Número de Copia de ADN/genética , Femenino , Genoma Humano/genética , Humanos , Cariotipificación , Embarazo
5.
BMC Pregnancy Childbirth ; 19(1): 213, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234808

RESUMEN

BACKGROUND: Early life microflora is an important determinant of immune and metabolic development and may have lasting consequences. However, the mode of delivery and the effect of povidone iodine disinfection on neonatal oral microflora colonization are still unclear. The objective of the study was to understand the effects of the use of polyvidone iodine on infant's oral microflora after transvaginal examination during delivery, provided data support for the establishment of neonatal oral microflora health. METHODS: A total of 20 cases of full-term neonatal delivered in October 2017 in Shenzhen Bao'an Maternity and Child Health Hospital through vaginal delivery. These neonates were randomly divided into two groups, the conventional disinfection group and the non-disinfection group. Simultaneously, 10 infants with elective cesarean section were taken as comparison. With Illumina MiSeq platform, 16S rRNA V3-V4 sequencing method was used to analyze bacterial DNA of oral secretions. RESULTS: At the phylum level, compared to the non-disinfection group, higher relative abundance of Bacteroidetes and Proteobacteria, and lower proportion of Firmicutes were observed in the cesarean section group and the disinfection group. As main composition of phylum Firmicutes, genus Lactobacillus presented extremely low in the cesarean section group and the disinfection group, whereas it was the absolute dominant bacteria in the non-disinfection group. Compared with the caesarean section group, only Lactobacillus increased in majority of the non-disinfection group. There was no increase in Lactobacillus in the disinfection group, but Prevotella, Escherichia-Shigella, Staphyloccus, and Klebsiella increased significantly. Through KEGG pathway analysis, we found that there were more harmful pathways such as staphylococcus aureus infection, viral myocarditis and sporulation in the disinfection group. CONCLUSIONS: The mode of delivery affects the infant's Lactobacillus obtained from the mother. Moreover, vulvar disinfection played an important part in the colonization of neonatal oral microbiota. And the impact of the first oral colonizers on infant health needs further follow-up investigations.


Asunto(s)
Bacterias/aislamiento & purificación , Parto Obstétrico/métodos , Desinfección , Boca/microbiología , Perineo/microbiología , Adulto , Antiinfecciosos Locales , Bacterias/genética , Bacteroidetes/aislamiento & purificación , Cesárea , ADN Bacteriano/análisis , Escherichia/aislamiento & purificación , Femenino , Humanos , Recién Nacido , Klebsiella/aislamiento & purificación , Lactobacillus/aislamiento & purificación , Masculino , Povidona Yodada , Prevotella/aislamiento & purificación , Proteobacteria/aislamiento & purificación , Staphylococcus/aislamiento & purificación , Vagina , Adulto Joven
6.
Biochem Biophys Res Commun ; 504(1): 203-210, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30180951

RESUMEN

Drug-loaded phase-transformation lipid nanoparticles (NPs) combined with low-intensity focused ultrasound (LIFU) for ultrasound molecular imaging and therapy, which is a very promising drug carrier and can provide both physical and chemical therapeutics, simultaneously. We successfully prepared the paclitaxel (PTX) loaded anti-LHRHR targeted phase-transformation lipid nanoparticles (PTX-anti-LHRHR-PTNPs) for ovarian cancer in this study combined with LIFU has the following characteristics: On the one hand, it showed smaller size and greater stability than blood cells, which significantly prolonged its half-life in the body, and can actively target ovarian cancer OVCAR-3 cells, and smoothly penetrate the endothelial gap into the tumor site for specifically killing the ovarian cancer cells. Thereby, the special drug carrier improved the therapeutic effect and reduced toxic and side effects, maximized the protection of normal tissues and minimized adverse reactions. On the other hand, PTX-anti-LHRHR-PTNPs can be targeted to focus after being injected intravenously and remain in the tumor target tissue for a long time. At the same time, liquid-gas phase-transformation can occur under LIFU triggering, resulting in more ideal and sustained ultrasound imaging effects. Then acoustic contrast agent is used to develop the molecular level of ultrasound scattering, so as to evaluate the diseased tissue from the molecular level.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Lípidos/química , Nanopartículas/química , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Acústica , Animales , Línea Celular Tumoral , Medios de Contraste/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica de Transmisión , Imagen Molecular , Ultrasonografía
7.
Int J Mol Sci ; 19(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477090

RESUMEN

The terpolymerization of carbon dioxide (CO2), propylene oxide (PO), and cyclohexene oxide (CHO) were performed by both random polymerization and block polymerization to synthesize the random poly (propylene cyclohexene carbonate) (PPCHC), di-block polymers of poly (propylene carbonate⁻cyclohexyl carbonate) (PPC-PCHC), and tri-block polymers of poly (cyclohexyl carbonate⁻propylene carbonate⁻cyclohexyl carbonate) (PCHC-PPC-PCHC). The kinetics of the thermal degradation of the terpolymers was investigated by the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) method), the single heating rate method (Coats-Redfern method), and the Isoconversional kinetic analysis method proposed by Vyazovkin with the data from thermogravimetric analysis under dynamic conditions. The values of ln k vs. T-1 for the thermal decomposition of four polymers demonstrate the thermal stability of PPC and PPC-PCHC are poorer than PPCHC and PCHC-PPC-PCHC. In addition, for PPCHC and PCHC-PPC-PCHC, there is an intersection between the two rate constant lines, which means that, for thermal stability of PPCHC, it is more stable than PCHC-PPC-PCHC at the temperature less than 309 °C and less stable when the decomposed temperature is more than 309 °C. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis/infrared spectrometry (TG/FTIR) techniques were applied to investigate the thermal degradation behavior of the polymers. The results showed that unzipping was the main degradation mechanism of all polymers so the final pyrolysates were cyclic propylene carbonate and cyclic cyclohexene carbonate. For the block copolymers, the main chain scission reaction first occurs at PC-PC linkages initiating an unzipping reaction of PPC chain and then, at CHC⁻CHC linkages, initiating an unzipping reaction of the PCHC chain. That is why the T-5% of di-block and tri-block polymers were not much higher than that of PPC while two maximum decomposition temperatures were observed for both the block copolymer and the second one were much higher than that of PPC. For PPCHC, the random arranged bulky cyclohexane groups in the polymer chain can effectively suppress the backbiting process and retard the unzipping reaction. Thus, it exhibited much higher T-5% than that of PPC and block copolymers.


Asunto(s)
Dióxido de Carbono/química , Ciclohexenos/química , Compuestos Epoxi/química , Polímeros/química , Temperatura , Cromatografía de Gases y Espectrometría de Masas , Cinética , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier
9.
Soft Matter ; 11(34): 6866-71, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26235149

RESUMEN

Dynamic processes and the structural evolution of cold-crystallized poly(trimethylene terephthalate) (PTT) film were investigated using Raman spectroscopy. Raman scattering of C[double bond, length as m-dash]O stretching vibration was related to the molecular chain movement and structure evolution in PTT during cold crystallization. In particular, information about each phase of crystallization, including induction, nucleation, nucleus growth, and secondary crystallization, was thoroughly revealed. The experimental results indicated that the kinetic parameters measured by the Raman method were in good agreement with those obtained by differential scanning calorimetry (DSC) and infrared spectroscopy. The blue-shifted C[double bond, length as m-dash]O stretching vibration resulting from the crystallization process is a popular phenomenon and may therefore have many potential applications in a wide range of areas.

10.
Appl Microbiol Biotechnol ; 99(21): 8963-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26004803

RESUMEN

tert-Butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) is a valuable chiral synthon, which is used for the synthesis of the cholesterol-lowering drugs atorvastatin and rosuvastatin. To date, only the alcohol dehydrogenases from Lactobacillus brevis (LbADH) and Lactobacillus kefir (LkADH) have demonstrated catalytic activity toward the asymmetric reduction of tert-butyl 6-chloro-3,5-dioxohexanoate (CDOH) to (S)-CHOH. Herein, a tetrad mutant of LkADH (LkTADH), A94T/F147L/L199H/A202L, was screened to be more efficient in this bioreduction process, exhibiting a 3.7- and 42-fold improvement in specific activity toward CDOH (1.27 U/mg) over LbADH (0.34 U/mg) and wild-type LkADH (0.03 U/mg), respectively. The molecular basis for the improved catalytic activity of LkTADH toward CDOH was investigated using homology modeling and docking analysis. Two major issues had a significant impact on the biocatalytic efficiency of this process, including (i) the poor aqueous stability of the substrate and (ii) partial substrate inhibition. A fed-batch strategy was successfully developed to address these issues and maintain a suitably low substrate concentration throughout the entire process. Several other parameters were also optimized, including the pH, temperature, NADP(+) concentration and cell loading. A final CDOH concentration of 427 mM (100 g/L) gave (S)-CHOH in 94 % yield and 99.5 % e.e. after a reaction time of 38 h with whole cells expressing LkTADH. The space-time yield and turnover number of NADP(+) in this process were 10.6 mmol/L/h and 16,060 mol/mol, respectively, which were the highest values ever reported. This new approach therefore represents a promising alternative for the efficient synthesis of (S)-CHOH.


Asunto(s)
Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Caproatos/metabolismo , Lactobacillus/enzimología , Mutación Missense , Lactobacillus/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Conformación Proteica
11.
ACS Appl Mater Interfaces ; 16(20): 26057-26065, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722302

RESUMEN

To address the issue of high energy consumption associated with monoethanolamine (MEA) regeneration in the CO2 capture process, solid acid catalysts have been widely investigated due to their performance in accelerating carbamate decomposition. The recently discovered carbon nanotube (CNT) catalyst presents efficient catalytic activity for bicarbonate decomposition. In this paper, bifunctional catalysts SO42-/TiO2-CNT (STC) were prepared, which could simultaneously catalyze carbamate and bicarbonate decomposition, and outstanding catalytic performance has been exhibited. STC significantly increased the CO2 desorption amount by 82.3% and decreased the relative heat duty by 46% compared to the MEA-CO2 solution without catalysts. The excellent stability of STC was confirmed by 15 cyclic absorption-desorption experiments, showing good practical feasibility for decreasing energy consumption in an industrial CO2 capture process. Furthermore, associated with the results of experimental characterization and theoretical calculations, the synergistic catalysis of STC catalysts via proton and charge transfer was proposed. This work demonstrated the potential of STC catalysts in improving the efficiency of amine regeneration processes and reducing energy consumption, contributing to the design of more effective and economical catalysts for carbon capture.

12.
J Cardiothorac Vasc Anesth ; 27(2): 253-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23507014

RESUMEN

OBJECTIVE: The aim of this study was to compare cognition following coronary artery bypass grafting (CABG) surgery with or without cardiopulmonary bypass (CPB) (on- or off-pump). DESIGN: Systematic review and meta-analysis of randomized control trials comparing cognitive outcome in patients undergoing CABG surgery on- or off-pump as assessed by continuous measures from a battery of 7 psychometric tests. SETTING: Multi-institutional centers performing CABG surgery. PARTICIPANTS: Patients with coronary artery disease requiring CABG surgery. INTERVENTIONS: CABG surgery with or without CPB. MEASUREMENTS AND MAIN RESULTS: A structured literature search identified 13 randomized control trials that included a total of 2,405 patients. Results from 7 psychometric tests were grouped into early (≤3 months) and late (6-12 months) postoperative periods. No significant differences were found between on- and off-pump groups in any of the 7 psychometric tests in either the early (p range 0.21-0.78) or late (p range 0.09-0.93) postoperative period. CONCLUSION: The results suggested that CPB may not be associated with cognitive decline that is associated with CABG surgery.


Asunto(s)
Cognición/fisiología , Puente de Arteria Coronaria Off-Pump/métodos , Periodo Posoperatorio , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Determinación de Punto Final , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Pruebas Neuropsicológicas , Psicometría , Sesgo de Publicación , Ensayos Clínicos Controlados Aleatorios como Asunto , Prueba de Secuencia Alfanumérica , Resultado del Tratamiento
13.
J Clin Endocrinol Metab ; 108(9): 2315-2323, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36869837

RESUMEN

AIMS: The present study aimed to prospectively evaluate the influence of gestational diabetes mellitus (GDM) on the gut microbiota in 1- and 6-month-old offspring, as well as the dynamic changes from 1 to 6 months of age. METHODS: Seventy-three mother-infant dyads (34 GDM vs 39 non-GDM) were included in this longitudinal study. Two fecal samples were collected for each included infant at home by the parents at 1 month of age ("M1 phase") and again at 6 months of age ("M6 phase"). Gut microbiota were profiled by 16S rRNA gene sequencing. RESULTS: Although no significant differences were observed in diversity and composition between GDM and non-GDM groups in the M1 phase, we observed differential structures and composition in the M6 phase between the 2 groups (P < .05), with lower levels of diversity, 6 depleted and 10 enriched gut microbes among infants born to GDM mothers. The dynamic changes in alpha diversity from the M1 to M6 phase were also significantly different according to GDM status (P < .05). Moreover, we found that the altered gut bacteria in the GDM group were correlated with infants' growth. CONCLUSION: Maternal GDM was associated not only with the community structure and composition in the gut microbiota of offspring at a specific time point, but also with the differential changes from birth to infancy. Altered colonization of the GDM infants' gut microbiota might affect their growth. Our findings underscore the critical impact of GDM on the formation of early-life gut microbiota and on the growth and development of infants.


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Lactante , Embarazo , Femenino , Humanos , Diabetes Gestacional/microbiología , Microbioma Gastrointestinal/genética , Estudios Longitudinales , ARN Ribosómico 16S/genética , Madres
14.
Se Pu ; 41(9): 799-806, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-37712544

RESUMEN

Carbon dioxide (CO2) absorption and capture is an effective measure to achieve the "dual carbon" goal of carbon peak and carbon neutrality in China. Organic amine compounds are widely used in the industrial separation and recovery of CO2. Thus, the establishment of analytical methods for organic amine compounds is of great significance for the research and development of carbon capture and storage (CCS) technology and carbon capture, utilization and storage (CCUS) technology. In this study, a method was developed for the determination of nine organic amine compounds in CO2 absorption liquid by hydrophilic interaction liquid chromatography (HILIC)-electrostatic field orbitrap high resolution mass spectrometry. The sample was diluted with water and filtered through a 0.22 µm nylon membrane before sampling and analysis. An Accucore HILIC column (100 mm×2.1 mm, 2.6 µm) was used for separation at 30 ℃. Gradient elution was conducted using 90% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase A and 10% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase B. Determination was performed using an electrospray ion source (ESI) in the positive ion mode. The quantitative analysis was carried out by standard addition method. The chromatographic retention performance of different chromatographic columns and the influence of different mobile phases on the separation of the organic amine compounds were compared, and the method was validated. The results showed that the linear ranges of the nine organic amine compounds were 0.04-25000 ng/mL with the linear correlation coefficients (R2) greater than 0.9910. The limits of detection (LODs) of the method were in the range of 0.0004-0.0080 ng/mL, and the limits of quantification (LOQs) of the method were in the range of 0.0035-0.0400 ng/mL. The average recoveries of the method ranged from 85.30% to 104.26% with relative standard deviations (RSDs) of 0.04%-7.95% at the spiked levels of 1, 1.5 and 3 times sample concentration. The established method was applied to detect the absorption waste liquid of a cement plant, and nine organic amine compounds could be effectively detected. The stability of the actual sample was tested, and the RSDs were 0.10%-6.35% in 48 h at 4 ℃. The method is sensitive, rapid and accurate for the determination of the nine organic amine compounds in industrial waste water. It can provide reference for the detection of organic amine compounds, and provide strong technical support for the research and industrial application of CO2 capture technology.

15.
Nat Commun ; 14(1): 6586, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852967

RESUMEN

Additive manufacturing technology has significantly impacted contemporary industries due to its ability to generate intricate computer-designed geometries. However, 3D-printed polymer parts often possess limited application potential, primarily because of their weak mechanical attributes. To overcome this drawback, this study formulates liquid crystal/photocurable resins suitable for the stereolithography technique by integrating 4'-pentyl-4-cyanobiphenyl with a photosensitive acrylic resin. This study demonstrates that stereolithography facilitates the precise modulation of the existing liquid crystal morphology within the resin. Furthermore, the orientation of the liquid crystal governs the oriented polymerization of monomers or prepolymers bearing acrylate groups. The products of this 3D printing approach manifest anisotropic behavior. Remarkably, when utilizing liquid crystal/photocurable resins, the resulting 3D-printed objects are approximately twice as robust as those created using commercial resins in terms of their tensile, flexural, and impact properties. This pioneering approach holds promise for realizing autonomously designed structures that remain elusive with present additive manufacturing techniques.

16.
ACS Omega ; 7(51): 48320-48331, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591178

RESUMEN

In this work, manganese dioxide (MnO2) nanosheets in situ loaded on a high-purity graphite flake (GF) were prepared by one-step hydrothermal deposition. It was found that the specific capacitance value of a single MnO2/GF electrode was 882 F/g at a current density of 1.0 A/g in a KOH electrolyte, and the specific capacitance retention of the MnO2/GF electrode can reach about 90.1% after 5000 charge-discharge cycles at a current density of 10 A/g. Furthermore, a MnO2/GF∥MnO2/GF symmetric supercapacitor device was fabricated with two pieces of MnO2/GF electrodes and ordinary filter paper with a 1 M KOH/PVA gel electrolyte as a separator. The single symmetric device displayed a high energy density of 64.2 Wh/kg at a power density of 400 W/kg within an applied voltage of 1.6 V, and this value was superior to those of previously reported MnO2-based systems. A tandem device consisting of a five-series tandem device (the applied voltage of a single device was 0.7 V) and a three-series tandem device (the applied voltage of a single device was 1.6 V) was prepared to drive a red light-emitting diode (LED). These findings open up application prospects for MnO2-based composite electrode materials for high-performance supercapacitors.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121030, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189488

RESUMEN

Silver nanowires (AgNWs) as a promising surface-enhanced Raman spectroscopy (SERS) substrate could be used in the analytical science due to its high sensitivity. However, it is difficult for the randomly-distributed silver nanowires to offer uniform "hot spots" to achieve the SERS signal reproducibility of small molecules detection. Herein, the evaporation-induced aggregation had been used to assemble long silver nanowires into highly aligned structure to achieve uniform "hot spots" for SERS detection. The normal glass slide with well-aligned silver nanowires could act as a high sensitivity and excellent reproducibility SERS substrate to provide a versatile platform for detecting analytes. Rhodamine 6G (R6G) is used to evaluate the sensitivity and reproducibility of these AgNWs SERS substrates. Even the low concentration of the R6G was 10-10 mol/L, the SERS features of R6G could be still observed clearly, and the uniform distribution of enhancement factor (EF) was higher than 0.8 × 104 accounting for about 75 % in the observed mapping area. Moreover, the relative standard deviation (RSD) of SERS intensity at the band of 610 cm-1 was used to estimate the signal reproducibility, and the calculated RSD value of aligned AgNWs substrate was about 3.6%, which was much higher than that of the randomly distributed AgNWs (26.8%) because of the highly aligned structure of silver nanowires with abundant and uniform inherent "hot spots". In addition, potential SERS detection of other small molecule, e.g. melamine was also demonstrated in the micromolar range.


Asunto(s)
Nanocables , Plata , Vidrio , Nanocables/química , Reproducibilidad de los Resultados , Plata/química , Espectrometría Raman/métodos
18.
Int J Biol Macromol ; 223(Pt A): 1443-1449, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36379284

RESUMEN

To study the effects of cooking methods on the structure and digestion changes of starch encapsulated by cellular structure, intact potato parenchyma cells were successfully isolated and then subjected to different domestic cooking methods, including baking, frying, boiling, and autoclaving. The morphology, crystalline structure, thermal properties, and in vitro starch digestibility of cooked cell samples were investigated. Our results indicated that potato cell walls remained intact and performed as physical barriers preventing the diffusion/absorption of α-amylase to intracellular starch substrates after baking or frying treatment. However, boiling or autoclaving treatment destroyed cell wall structure, and the disrupted cellular structure reduced the digestion rate, likely by inhibiting diffusion of amylase through a weakened cell wall barrier, but could not lower the final digestion extent when compared to the pure starch. These findings suggested that potato products with lower glycemic index can be obtained by baking or frying treatment.


Asunto(s)
Solanum tuberosum , Almidón , Almidón/química , Solanum tuberosum/química , Digestión , Culinaria/métodos , Índice Glucémico
19.
ACS Appl Mater Interfaces ; 13(16): 18923-18933, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33852269

RESUMEN

Cationic group distribution and elemental composition are two key factors determining the conductivity and stability of anion exchange membranes (AEMs) for vanadium redox flow batteries (VRFBs). Herein, fluorinated tetra-dimethylaminomethyl-poly(fluorenyl ether)s (TAPFE)s were designed as the polymer precursors, which were reacted with 6-bromo-N,N,N-trimethylhexan-1-aminium bromide to introduce di-quaternary ammonium (DQA) containing side chains. The resultant DQA-TAPFEs with a rigid fluorinated backbone and flexible multi-cationic side chains exhibited distinct micro-phase separation as probed by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). DQA-TAPFE-20 with an ion exchange capacity (IEC) of 1.55 mmol g-1 exhibited a SO42- conductivity of 10.1 mS cm-1 at room temperature, much higher than that of a control AEM with an identical backbone but spaced out cationic groups, which had a similar IEC of 1.60 mmol g-1 but a SO42- conductivity of only 3.2 mS cm-1. Due to the Donnan repulsion effect, the DQA-TAPFEs exhibited significantly lower VO2+ permeability than Nafion 212. The VRFB assembled with DQA-TAPFE-20 achieved an energy efficiency of 80.4% at 80 mA cm-1 and a capacity retention rate of 82.9% after the 50th cycling test, both higher than those of the VRFB assembled with Nafion 212 and other AEMs in the literature. Therefore, the rationally designed DQA-TAPFEs are promising candidates for VRFB applications.

20.
Mol Ther Oncolytics ; 22: 574-581, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34589576

RESUMEN

Recent studies have indicated that long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification play critical roles in human cancers; however, their regulation on cervical cancer is largely unclear. Here, our study tries to investigate the underlying mechanisms by which lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) modulates cervical cancer tumorigenesis. Results illuminated that FOXD2-AS1 expression was significantly upregulated in cervical cancer cells and tissue, which was closely correlated to the unfavorable prognosis. Functionally, gain and loss-of-function assays showed that FOXD2-AS1 promoted the migration and proliferation of cervical cancer cells. Besides, FOXD2-AS1 silencing repressed the tumor growth in vivo. Mechanistically, m6A methyltransferase methyltransferase-like 3 (METTL3) enhanced the stability of FOXD2-AS1 and maintained its expression. Moreover, FOXD2-AS1 recruited lysine-specific demethylase 1 (LSD1) to the promoter region of p21 to silence its transcription abundance. In conclusion, these findings support that METTL3/FOXD2-AS1 accelerates cervical cancer progression via a m6A-dependent modality, which may serve as a potential therapeutic target for cervical cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA