Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(9): 15507-15526, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859199

RESUMEN

Deterministic computer-controlled optical finishing is an essential approach for achieving high-quality optical surfaces. Its determinism and convergence rely heavily on precise and smooth motion control to guide the machine tool over an optical surface to correct residual errors. One widely supported and smooth motion control model is position-velocity-time (PVT), which employs piecewise cubic polynomials to describe positions. Our prior research introduced a PVT-based velocity scheduling method, demonstrating sub-nanometer level convergence in ion beam figuring (IBF) processes. However, three challenges remained. Firstly, this method relies on quadratic programming, resulting in computational intensiveness for dense tool paths. Secondly, the dynamics constraints and velocity and acceleration continuities are not comprehensively considered, limiting the full potential of PVT-based control. Thirdly, no compensation mechanism existed when dynamics constraints are exceeded. In this study, in response to these challenges, we proposed the Enhanced PVT (E-PVT) method, reducing the time complexity from O(n3) to O(n) while fully addressing dynamics constraints and continuities. A novel compensation method utilizing particle swarm optimization was proposed to address situations where dynamics constraints might be exceeded while maintaining the overall processing efficiency. Validation through simulation and experimentation confirmed the improved performance of E-PVT.

2.
Sci Rep ; 14(1): 14190, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902267

RESUMEN

As a newly proposed optimization algorithm based on the social hierarchy and hunting behavior of gray wolves, grey wolf algorithm (GWO) has gradually become a popular method for solving the optimization problems in various engineering fields. In order to further improve the convergence speed, solution accuracy, and local minima escaping ability of the traditional GWO algorithm, this work proposes a multi-strategy fusion improved gray wolf optimization (IGWO) algorithm. First, the initial population is optimized using the lens imaging reverse learning algorithm for laying the foundation for global search. Second, a nonlinear control parameter convergence strategy based on cosine variation is proposed to coordinate the global exploration and local exploitation ability of the algorithm. Finally, inspired by the tunicate swarm algorithm (TSA) and the particle swarm algorithm (PSO), a nonlinear tuning strategy for the parameters, and a correction based on the individual historical optimal positions and the global optimal positions are added in the position update equations to speed up the convergence of the algorithm. The proposed algorithm is assessed using 23 benchmark test problems, 15 CEC2014 test problems, and 2 well-known constraint engineering problems. The results show that the proposed IGWO has a balanced E&P capability in coping with global optimization as analyzed by the Wilcoxon rank sum and Friedman tests, and has a clear advantage over other state-of-the-art algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA