Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arch Toxicol ; 97(12): 3243-3258, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37777989

RESUMEN

The carcinogenic mechanism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a well-known tobacco carcinogen, has not been fully elucidated in epigenetic studies. 5-Methylcytosine (5mC) modification plays a major role in epigenetic regulation. In this study, the 5mC level increased in both BEAS-2B human bronchial epithelium cells treated with 100 mg/L NNK for 24 h and NNK-induced malignant-transformed BEAS-2B cells (2B-NNK cells), suggesting that 5mC modification is associated with the malignant transformation mechanism of NNK. Using a combination of Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq), RNA sequencing (RNA-seq), and bioinformatics analysis of data from the Genomic Data Commons database, we found that the Adipogenesis regulatory factor (ADIRF) promoter region was abnormally hypermethylated, yielding low ADIRF mRNA expression, and that ADIRF overexpression could inhibit the proliferation, migration, and invasion of 2B-NNK cells. This finding suggests that ADIRF plays a tumor suppressor role in the NNK-induced malignant transformation of cells. Subsequently, using 5-Aza-2'-deoxycytidine (5-Aza-2'-dC) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Catalytically Dead Cas9 (dCas9 system), we verified that the demethylation of the ADIRF promoter region in 2B-NNK cells inhibited the proliferation, migration, and invasion ability of the cells and increased their apoptosis ability. These results suggest that abnormal 5mC modification of the ADIRF promoter plays a positive regulatory role in the pathogenesis of NNK-induced lung cancer. This study offers a new experimental basis for the epigenetic mechanism of NNK-induced lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Humanos , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Epigénesis Genética , Células Epiteliales , Pulmón , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nitrosaminas/toxicidad
2.
Ecotoxicol Environ Saf ; 255: 114817, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963185

RESUMEN

Antibiotics have been widely detected in the water environment and thus pose a potential threat to human health. Although antibiotics have health-promoting properties, whether and how they affect health at environmental concentrations remains uncharacterised. We detected antibiotics in surface water and groundwater in China. Sulfonamides (851 ng/L) and tetracyclines (1322 ng/L) showed the highest concentrations in surface water, while the highest concentration of sulfonamides detected in groundwater was 250 ng/L. We analysed the distribution of four classes of antibiotics (sulfonamides, tetracyclines, macrolides, and quinolones) and evaluated the associated health risks in the surface water of seven cities. We found that antibiotic pollution caused health risks to the 0-3-months age group, but not to other age groups. We further demonstrated that simulated long-term exposure to environmental concentrations of antibiotics had concentration-dependent toxic effects on L-02 hepatocytes, affected cell proliferation, and induced oxidative damage and DNA damage. Chronic exposure to mixed sulfonamides affected growth, caused liver damage, and reduced the abundance of intestinal flora in mice. Under exposure to antibiotics, the abundance of Helicobacter pylori in the gut flora significantly increased and posed a health risk to humans. These results indicated that exposure to antibiotics at environmental concentrations can cause oxidative damage and inflammation both in vitro and in vivo. These findings add to the body of basic data on the distribution of antibiotics in the water environment, and provide a scientific basis for the evaluation of antibiotic toxicity.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Antibacterianos/toxicidad , Antibacterianos/análisis , Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , China , Sulfanilamida , Medición de Riesgo , Tetraciclinas/análisis , Monitoreo del Ambiente
3.
Sensors (Basel) ; 23(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299896

RESUMEN

This paper proposes a temperature sensor based on temperature-frequency conversion using 180 nm CMOS technology. The temperature sensor consists of a proportional-to-absolute temperature (PTAT) current generating circuit, a relaxation oscillator with oscillation frequency proportional to temperature (OSC-PTAT), a relaxation oscillator with oscillation frequency independent of temperature (OSC-CON), and a divider circuit cascaded with D flip-flops. Using BJT as the temperature sensing module, the sensor has the advantages of high accuracy and high resolution. An oscillator that uses PTAT current to charge and discharge capacitors to achieve oscillation, and utilizes voltage average feedback (VAF) to enhance the frequency stability of the oscillator is tested. Through the dual temperature sensing process with the same structure, the influence of variables such as power supply voltage, device, and process deviation can be reduced to a certain extent. The temperature sensor in this paper was implemented and tested with a temperature measurement range of 0-100 °C, an inaccuracy of +0.65 °C/-0.49 °C after two-point calibration, a resolution of 0.003 °C, a resolution Figure of Merit (FOM) of 6.7 pJ/K2, an area of 0.059 mm2, and a power consumption of 32.9 µW.


Asunto(s)
Suministros de Energía Eléctrica , Temperatura , Diseño de Equipo , Retroalimentación , Calibración
4.
Exp Cell Res ; 409(1): 112866, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655600

RESUMEN

The occurrence of liver diseases is attributed to mitochondrial damage. Mitophagy selectively removes dysfunctional mitochondria, thereby preserving mitochondrial function. Augmenter of liver regeneration (ALR) protects the mitochondria from injury. However, whether ALR protection is associated with mitophagy remains unclear. In this study, mitochondrial damage was induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and long-form ALR (lfRNA)-mediated protection against this damage was investigated. Treatment of HepG2 cells with CCCP elevated the level of intracellular ROS, inhibited ATP production, and increased the mitochondrial membrane potential and cell apoptotic rate. However, in lfALR-transfected cells, CCCP-induced cell injury was clearly alleviated, the apoptosis and ROS levels clearly declined, and the ATP production was significantly enhanced as compared with that in vector-Tx cells. Furthermore, lfALR overexpression promoted autophagy and mitophagy via a PINK1/Parkin-dependent pathway, whereas knockdown of ALR suppressed mitophagy. In lfALR-transfected cells, the phosphorylation of AKT was decreased, thus, downregulating the phosphorylation of the transcription factor FOXO3a at Ser315. In contrast, the phosphorylation of AMPK was enhanced, thereby upregulating the phosphorylation of FOXO3a at Ser413. Consequently, FOXO3a's nuclear translocation and binding to the promoter region of PINK1 was enhanced, and the accumulation of PINK1/Parkin in mitochondria increased. Meanwhile, short-form ALR (sfALR) also increased PINK1 expression through FOXO3a with the similar pathway to lfALR. In conclusion, our data suggest a novel mechanism through which both lfALR and sfALR protect mitochondria by promoting PINK1/Parkin-dependent mitophagy through FOXO3a activation.


Asunto(s)
Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Regeneración Hepática/fisiología , Mitocondrias/metabolismo , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Células Hep G2 , Humanos , Regeneración Hepática/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Ecotoxicology ; 28(8): 1003-1008, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31471821

RESUMEN

Anaerobic ammonium-oxidizing (anammox) bacteria can play an important role in nitrogen elimination in the environment. However, the effect of heavy metals on anammox bacteria in aquatic ecosystem remains largely unknown. The present study investigated the variability of anammox bacterial community in a freshwater reservoir after a severe heavy metal spill. The richness (Chao1 richness estimator = 2-18), diversity (Shannon index = 0.26-2.04) and community structure of anammox bacteria changed considerably with sampling date, while anammox bacterial abundance (from 1.38 × 105 to 3.09 × 105 anammox bacterial 16S rRNA gene copies per gram dry sediment) was less responsive to metal spill. Anammox bacterial communities were mainly composed of Brocadia- and Anammoxoglobus-like bacteria as well as novel phylotype, however, there relative abundance varied among sampling dates. This work could add the knowledge of the response of anammox bacteria to heavy metal contamination.


Asunto(s)
Compuestos de Amonio/efectos adversos , Bacterias Anaerobias/efectos de los fármacos , Sedimentos Geológicos/química , Metales Pesados/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Bacterias Anaerobias/fisiología , Biodiversidad , Sedimentos Geológicos/microbiología , Oxidación-Reducción , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
6.
J Environ Sci (China) ; 77: 392-399, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30573104

RESUMEN

It has been well-documented that the distribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in soils can be affected by heavy metal contamination, whereas information about the impact of heavy metal on these ammonia-oxidizing microorganisms in freshwater sediment is still lacking. The present study explored the change of sediment ammonia-oxidizing microorganisms in a freshwater reservoir after being accidentally contaminated by industrial discharge containing high levels of metals. Bacterial amoA gene was found to be below the quantitative PCR detection and was not successfully amplified by conventional PCR. The number of archaeal amoA gene in reservoir sediments were 9.62 × 102-1.35 × 107 copies per gram dry sediment. AOA abundance continuously decreased, and AOA richness, diversity and community structure also considerably varied with time. Therefore, heavy metal pollution could have a profound impact on freshwater sediment AOA community. This work could expand our knowledge of the effect of heavy metal contamination on nitrification in natural ecosystems.


Asunto(s)
Amoníaco/metabolismo , Archaea/efectos de los fármacos , Archaea/metabolismo , Agua Dulce/microbiología , Sedimentos Geológicos/química , Metales Pesados/farmacología , Contaminantes Químicos del Agua/farmacología , Archaea/clasificación , Biodiversidad , Análisis por Conglomerados , Metales Pesados/análisis , Oxidación-Reducción , Filogenia , Contaminantes Químicos del Agua/análisis
7.
J Cell Physiol ; 233(8): 6148-6157, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29323715

RESUMEN

The aberrant release of Ca2+ from the endoplasmic reticulum (ER) contributes to the onset of ER stress, which is closely related to the pathogenesis of non-alcoholic fatty liver disease. We previously reported that augmenter of liver regeneration (ALR) alleviates ER stress and protects hepatocytes from lipotoxicity. However, the link between ALR protection and the suppression of ER stress remains unclear. In this study, we investigated whether the protection against liver steatosis afforded by ALR is related to its inhibition of calcium overflow from the ER to the mitochondria. The treatment of HepG2 cells with palmitic acid (PA) upregulated IP3R expression, triggering ER-luminal Ca2+ release and inducing ER stress. However, in ALR-transfected (ALR-Tx) HepG2 cells, PA-induced cell injury was clearly alleviated compared with that in vector-Tx cells. After exposure to PA, IP3R expression was downregulated and ER stress was effectively inhibited in the ALR-Tx cells, and ER-Ca2+ release and simultaneous mitochondrial Ca2+ uptake were lower than those in vector-Tx cells. The knockdown of ALR expression with shRNA abolished the protective effects afforded by ALR transfection. PA treatment also suppressed the interaction between BCL-2 and IP3R in HepG2 cells, whereas this interaction was massively enhanced in the ALR-Tx cells, effectively reducing the IP3R-mediated ER-Ca2+ release and thus mitochondrial Ca2+ influx. Our results suggest that the inhibition of ER stress by ALR is related to the interruption of the interaction between BCL2 and IP3R, demonstrating a novel mechanism of ER stress resistance in ALR-Tx cells.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regeneración Hepática/efectos de los fármacos , Regeneración Hepática/fisiología , Ácido Palmítico/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/fisiología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transfección/métodos
8.
Appl Microbiol Biotechnol ; 102(1): 433-445, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29079862

RESUMEN

Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) organisms can be important methane sinks in a wetland. However, the influences of the vegetation type on aerobic MOB and n-damo communities in wetland, especially in constructed wetland, remain poorly understood. The present study investigated the influences of the vegetation type on both aerobic MOB and n-damo organisms in a constructed urban landscape wetland. Sediments were collected from eight sites vegetated with different plant species. The abundance (1.19-3.27 × 107 pmoA gene copies per gram dry sediment), richness (Chao1 estimator = 16.3-81.5), diversity (Shannon index = 2.10-3.15), and structure of the sediment aerobic MOB community were found to vary considerably with sampling site. In contrast, n-damo community abundance (8.74 × 105-4.80 × 106 NC10 16S rRNA gene copies per gram dry sediment) changed slightly with the sampling site. The richness (Chao1 estimator = 1-11), diversity (Shannon index = 0-0.78), and structure of the NC10 16S rRNA gene-based n-damo community illustrated slight site-related changes, while the spatial changes of the pmoA gene-based n-damo community richness (Chao1 estimator = 1-8), diversity (Shannon index = 0-0.99), and structure were considerable. The vegetation type could have a profound impact on the wetland aerobic MOB community and had a stronger influence on the pmoA-based n-damo community than on the NC10 16S-based one in urban wetland. Moreover, the aerobic MOB community had greater abundance and higher richness and diversity than the n-damo community. Methylocystis (type II MOB) predominated in urban wetland, while no known type I MOB species was detected. In addition, the ratio of total organic carbon to total nitrogen (C/N) might be a determinant of sediment n-damo community diversity and aerobic MOB richness.


Asunto(s)
Sedimentos Geológicos/microbiología , Methylococcaceae/metabolismo , Parques Recreativos , Microbiología del Suelo , Humedales , Aerobiosis , Anaerobiosis , Fenómenos Fisiológicos Bacterianos , ADN Bacteriano/genética , Methylococcaceae/clasificación , Methylococcaceae/genética , Nitritos/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
9.
Front Public Health ; 12: 1359567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500735

RESUMEN

With the development of technology and industry, the problem of global air pollution has become difficult to ignore. We investigated the association between air pollutant concentrations and daily all-cause mortality and stratified the analysis by sex, age, and season. Data for six air pollutants [fine particulate matter (PM2.5), inhalable particles (PM10), nitric dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)] and daily mortality rates were collected from 2015 to 2019 in Guangzhou, China. A time-series study using a quasi-Poisson generalized additive model was used to examine the relationships between environmental pollutant concentrations and mortality. Mortality data for 296,939 individuals were included in the analysis. The results showed that an increase of 10 µg/m3 in the concentrations of PM2.5, PM10, SO2, O3, NO2, and CO corresponded to 0.84% [95% confidence interval (CI): 0.47, 1.21%], 0.70% (0.44, 0.96%), 3.59% (1.77, 5.43%), 0.21% (0.05, 0.36%), 1.06% (0.70, 1.41%), and 0.05% (0.02, 0.09%), respectively. The effects of the six air pollutants were more significant for male individuals than female individuals, the cool season than the warm season, and people 75 years or older than those younger than 75 years. PM2.5, PM10, SO2, and NO2 were all associated with neoplasms and circulatory and respiratory diseases. The two-pollutant models found that PM2.5, PM10, and NO2 may independently affect the risk of mortality. The results showed that exposure to PM2.5, PM10 and NO2 may increase the risk of daily all-cause excessive mortality in Guangzhou.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Masculino , Humanos , Femenino , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Ambientales/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , China/epidemiología
10.
Environ Sci Pollut Res Int ; 31(22): 31978-31988, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641693

RESUMEN

o-Cresol is a toxic substance with strong irritating and corrosive effects on skin and mucous membranes. To date, information on the effects of o-cresol on microbial communities in the natural environment is very limited. In the present study, 16S rRNA sequencing and metagenomic technique were carried out to elucidate the effects of the o-cresol spill on microbial communities in river sediments and nearby soils. o-Cresol spill induced the increase in the relative abundance of phyla Planctomycetes and Gemmatimonadetes, suggesting their resilience to o-cresol-induced stress. Uncultured Gemmatimonadetes genera and the MND1 genus exhibited enrichment, while the Pseudomonas genus dominated across all samples, indicating their potential pivotal roles in adapting to the o-cresol spill. Moreover, o-cresol spill impaired the metabolic functions of microbes but triggered their defense mechanisms. Under o-cresol pressure, microbial functions related to carbon fixation were upregulated and functions associated with sulfur metabolism were downregulated. In addition, the o-cresol spill led to an increase in functional genes related to the conversion of o-cresol to 3-methylcatechol. Several genes involved in the degradation of aromatic compounds were also identified, potentially contributing to the biodegradation of o-cresol. This study provides fresh insights into the repercussions of an abrupt o-cresol spill on microbial communities in natural environments, shedding light on their adaptability, defense mechanisms, and biodegradation potential.


Asunto(s)
Cresoles , Sedimentos Geológicos , Ríos , Microbiología del Suelo , Ríos/microbiología , Ríos/química , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , ARN Ribosómico 16S , Microbiota/efectos de los fármacos
11.
Huan Jing Ke Xue ; 45(2): 854-861, 2024 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-38471924

RESUMEN

The aggregation and sedimentation of micro/nano-plastics significantly affect their migration and distribution in the environment. This study investigated the effects of Na+ and natural organic matter (NOM) on the aggregation and sedimentation of polystyrene nano-plastics (PS-NPs) in the aqueous phase. Six types of water, such as seawater, lake water, and domestic sewage, were used to evaluate the above effects and other potential influencing factors. The results indicated that Na+ could facilitate the sedimentation of PS-NPs when it was less than 80 mmol·L-1, whereas it could promote the aggregation and suspension of PS-NPs when the concentration was greater than 80 mmol·L-1. NOM molecules affected the aggregation and sedimentation of PS-NPs by changing the ζ potential and relative density of particles via forming a multilayer adsorption structure with Na+ on the particle surface. It was observed that NOM greater than 10 mg·L-1 enhanced the dispersion and suspension of PS-NPs, which might have been attributed to the decrease in relative density of the particles as a large amount of NOM was absorbed onto the surface. Compared with synthetic waters, environmental waters enhanced the aggregation of PS-NPs, which may have been related to the amino acid, protein, and other organic macro-molecules in the water.

12.
Front Public Health ; 11: 1058368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741946

RESUMEN

This study examined the short-term relationship between ambient air pollutants and children's outpatient visits, and identified the effect of modifications by season. Daily recordings of air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) and children's outpatient visit data were collected in Guangzhou from 2015 to 2019. A generalized additive model adjusted for potential confounding was introduced to verify the association between ambient air pollution and outpatient visits for children. Subgroup analysis by season was performed to evaluate the potential effects. A total of 5,483,014 children's outpatient visits were recorded. The results showed that a 10 µg/m3 increase in CO, NO2, O3, SO2, PM10, and PM2.5 corresponded with a 0.19% (95% CI: 0.15-0.24%), 2.46% (2.00-2.92%), 0.27% (0.07-0.46%), 7.16% (4.80-9.57%), 1.16% (0.83-1.49%), and 1.35% (0.88-1.82%) increase in children's outpatient visits on the lag0 of exposure, respectively. The relationships were stronger for O3, PM10, and PM2.5 in the warm seasons, and for CO, NO2, and SO2 in the cool seasons. When adjusting for the co-pollutants, the effects of CO, NO2, and PM10 were robust. The results of this study indicate that six air pollutants might increase the risk of children's outpatient visits in Guangzhou, China, especially in the cool season.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Niño , Dióxido de Nitrógeno , Pacientes Ambulatorios , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , China/epidemiología , Material Particulado/análisis
13.
Environ Pollut ; 317: 120660, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436665

RESUMEN

Thallium (Tl) is an extremely toxic metal. The release of Tl into the natural environment can pose a potential threat to organisms. So far, information about the impact of Tl on indigenous microorganisms is still very limited. In addition, there has been no report on how sudden Tl spill influences the structure and function of the microbial community. Therefore, this study explored the response of river sediment microbiome to a Tl spill. Residual T1 in the sediment significantly decreased bacterial community diversity. The increase in the abundance of Bacteroidetes in all Tl- impacted sediments suggested the advantage of Bacteroidetes to resist Tl pressure. Under T1 stress, microbial genes related to carbon fixation and gene cysH participating in assimilatory sulfate reduction were down-regulated, while genes related to nitrogen cycling were up-regulated. After T1 spill, increase in both metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) was observed in Tl-impacted sediments. Moreover, the abundance of MRGs and ARGs was significantly correlated with sediment Tl concentration, implying the positive effect of Tl contamination on the proliferation of these resistance genes. Procrustes analysis suggested a significant congruence between profiles of MRGs and bacterial communities. Through LEfSe and co-occurrence network analysis, Trichococcus, Polaromonas, and Arenimonas were identified to be tolerant and resistant to Tl pollution. The colocalization analysis of contigs indicated the co-effects of selection and transfer for MRGs/ARGs were important reasons for the increase in the microbial resistance in Tl-impacted sediments. This study added new insights into the effect of Tl spill on microbial community and highlighted the role of heavy metal spill in the increase of both heavy metal and antibiotic resistance genes.


Asunto(s)
Metales Pesados , Microbiota , Talio/toxicidad , Genes Bacterianos , Bacterias/genética , Metales Pesados/análisis , Antibacterianos/farmacología
14.
Sci Total Environ ; 880: 163101, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996985

RESUMEN

Thallium (Tl) is widely used in various industries, which increases the risk of leakage into the environment. Since Tl is highly toxic, it can do a great harm to human health and ecosystem. In order to explore the response of freshwater sediment microorganisms to sudden Tl spill, metagenomic technique was used to elucidate the changes of microbial community composition and functional genes in river sediments. Tl pollution could have profound impacts on microbial community composition and function. Proteobacteria remained the dominance in contaminated szediments, indicating that it had a strong resistance to Tl contamination, and Cyanobacteria also showed a certain resistance. Tl pollution also had a certain screening effect on resistance genes and affected the abundance of resistance genes. Metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) were enriched at the site near the spill site, where Tl concentration was relatively low among polluted sites. When Tl concentration was higher, the screening effect was not obvious and the resistance genes even became lower. Moreover, there was a significant correlation between MRGs and ARGs. In addition, co-occurrence network analysis showed that Sphingopyxis had the most links with resistance genes, indicating that it was the biggest potential host of resistance genes. This study provided new insight towards the shifts in the composition and function of microbial communities after sudden serious Tl contamination.


Asunto(s)
Microbiota , Talio , Humanos , Talio/análisis , Ríos , Metales/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Antibacterianos
15.
Materials (Basel) ; 16(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37959638

RESUMEN

The accumulated amount of nickel-iron slag has increased with the rapid development of the nickel-iron industry. To determine a method for comprehensively utilizing nickel-iron slag, triaxial compression tests of nickel-iron slag cement-based composite materials under the action of sodium sulfate were conducted, and the effects of the sodium sulfate concentration on the stress-strain relation, shear strength, cohesion, and internal friction angle of the composite materials were analyzed. In addition, the influence mechanism of the nickel-iron slag content and sodium sulfate concentration on the composite was examined. The results revealed that the stress-strain curve of the nickel-iron slag cement-based composites reflected softening. With the increase in the sodium sulfate concentration, the brittleness increased, while the shear strength, cohesion, and internal friction angle decreased; the addition of nickel-iron slag slowed down the rate at which these parameters decrease. Scanning electron microscopy images revealed that nickel-iron slag can improve the internal structure of the cement composite soil, enhance its compactness, and improve its corrosion resistance. The optimum nickel-iron slag content of 14% can improve the cementitious composites' resistance to sodium sulfate erosion in terms of solid waste utilization and cementitious soil performance. The results obtained can provide technical parameters for preparing and designing cement-based composite materials as well as certain theoretical significance and engineering reference value.

16.
Materials (Basel) ; 16(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902944

RESUMEN

Microdamage in a rock induces a change in the rock's internal structure, affecting the stability and strength of the rock mass. To determine the influence of dissolution on the pore structure of rocks, the latest continuous flow microreaction technology was used, and a rock hydrodynamic pressure dissolution test device simulating multifactor coupling conditions was independently developed. The micromorphology characteristics of carbonate rock samples before and after dissolution were explored using computed tomography (CT) scanning. To conduct the dissolution test on 64 rock samples under 16 groups of working conditions, 4 rock samples under 4 groups were scanned by CT under working conditions, twice before and after corrosion. Subsequently, the changes in the dissolution effect and pore structure before and after dissolution were quantitatively compared and analyzed. The results show that the dissolution results were directly proportional to the flow rate, temperature, dissolution time, and hydrodynamic pressure. However, the dissolution results were inversely proportional to the pH value. The characterization of the pore structure changes before and after sample erosion is challenging. After erosion, the porosity, pore volume, and aperture of rock samples increased; however, the number of pores decreased. Under acidic conditions near the surface, carbonate rock microstructure changes can directly reflect structural failure characteristics. Consequently, heterogeneity, the presence of unstable minerals, and a large initial pore size result in the formation of large pores and a new pore system. This research provides the foundation and assistance for predicting the dissolution effect and evolution law of dissolved pores in carbonate rocks under multifactor coupling, offering a crucial guide for engineering design and construction in karst areas.

17.
Front Public Health ; 11: 1137933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969623

RESUMEN

Background: The adverse effects of 2.5-µm particulate matter (PM2.5) exposure on public health have become an increasing concern worldwide. However, epidemiological findings on the effects of PM2.5-bound metals on children's respiratory health are limited and inconsistent because PM2.5 is a complicated mixture. Objectives: Given the vulnerability of children's respiratory system, aim to pediatric respiratory health, this study evaluated the potential sources, health risks, and acute health effects of ambient PM2.5-bound metals among children in Guangzhou, China from January 2017 to December 2019. Methods: Potential sources of PM2.5-bound metals were detected using positive matrix factorization (PMF). A health risk assessment was conducted to investigate the inhalation risk of PM2.5-bound metals in children. The associations between PM2.5-bound metals and pediatric respiratory outpatient visits were examined with a quasi-Poisson generalized additive model (GAM). Results: During 2017-2019, the daily mean concentrations of PM2.5 was 53.39 µg/m3, and the daily mean concentrations of PM2.5-bound metals range 0.03 ng/m3 [thorium (Th) and beryllium (Be)] from to 396.40 ng/m3 [iron (Fe)]. PM2.5-bound metals were mainly contributed by motor vehicles and street dust. PM2.5-bound arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr)(VI), nickel (Ni), and lead (Pb) were found to pose a carcinogenic risk (CR). A quasi-Poisson GAM was constructed that showed there were significant associations between PM2.5 concentrations and pediatric outpatient visits for respiratory diseases. PM2.5 was significantly associated with pediatric outpatient visits for respiratory diseases. Moreover, with a 10 µg/m3 increase in Ni, Cr(VI), Ni, and As concentrations, the corresponding pediatric outpatient visits for respiratory diseases increased by 2.89% (95% CI: 2.28-3.50%), acute upper respiratory infections (AURIs) increased by 2.74% (2.13-3.35%), influenza and pneumonia (FLU&PN) increased by 23.36% (20.09-26.72%), and acute lower respiratory infections (ALRIs) increased by 16.86% (15.16-18.60%), respectively. Conclusions: Our findings showed that PM2.5 and PM2.5-bound As, Cd, Co, Cr(VI), Ni, and Pb had adverse effects on pediatric respiratory health during the study period. New strategies are required to decrease the production of PM2.5 and PM2.5-bound metals by motor vehicles and to reduce levels of street dust to reduce children's exposure to these pollutants and thereby increase child health.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Niño , Humanos , Metales Pesados/análisis , Cadmio , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Plomo , Monitoreo del Ambiente , Material Particulado/efectos adversos , Material Particulado/análisis , Polvo/análisis
18.
Materials (Basel) ; 15(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36013666

RESUMEN

In this study, the effect of lithium slag (LS) on the frost resistance of cement-soil was evaluated. The results of freeze−thaw damage on the surface of the cement-soil, freeze−thaw mass loss, unconfined compression strength, triaxial shear strength, cohesion, and internal friction angle were tested at various freeze−thaw cycles after 90 days of curing when LS was incorporated into the cement-soil at different proportions (0%, 6%, 12%, and 18%). Combining nuclear magnetic resonance (NMR) T2 distribution and scanning electron microscopy (SEM) microscopic images, the mechanism of the effect of LS on the cement-soil was also analyzed. The experiment confirmed that the surface freeze−thaw damage degree and mass loss value of the cement-soil decreased after incorporating different LS contents, and that the unconfined compression strength, triaxial shear strength, cohesion, and internal friction angle also improved significantly compared with the specimens without LS. In this experiment, the optimization level of the cement-soil performance with different LS content was ranked as 12% > 18% > 6% > 0%. According to the NMR and SEM analysis results, the LS content of 12% can optimize the internal pore structure of the cement-soil and strengthen the bond between aggregate particles, hence inhibiting the extension of freeze-swelling cracks induced by freeze−thaw cycles. In conclusion, LS can effectively enhance the frost resistance of cement-soil, and the optimum content in this experiment is 12%.

19.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295447

RESUMEN

The latest continuous flow micro reaction technology was adopted to independently develop carbonate rock dissolution test equipment. Carbonate rock dissolution tests were conducted under different temperatures, flow rates, and dynamic water pressure conditions to study the dissolution process of carbonate rocks under the coupling of heat-water-chemistry. The dissolution effect and development law of carbonate rocks were explored by quantitatively studying carbonate rock dissolution rate and chemical composition of karst water. The results showed that the self-designed dissolution test equipment has obvious advantages. After dissolution, carbonate rock specimens were damaged to varying degrees. The dissolution rate was proportional to water velocity and hydrodynamic pressure, with the velocity effect being greater than the hydrodynamic pressure effect. The pH value, conductivity, and Ca2+ ion content of the reaction solution gradually increased after dissolution. The development and application of the equipment have proved that, at low dynamic water pressures (2 MPa), the water flow velocity effect on the dissolution velocity was 1.5 times that when the dynamic water pressure was high (6 MPa); at a low water flow velocity of 15 mL/min, the dynamic water pressure effect on the dissolution velocity was three times that when the water flow velocity was high (75 mL/min). The development process is gradually becoming strong and stable. Its research has important theoretical significance and engineering application value to provide technical means and guarantee for the early identification, karst development, and safety evaluation of karst geological disasters.

20.
Environ Sci Pollut Res Int ; 29(10): 14987-14998, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34622407

RESUMEN

Phenol is widely used in industrial processes and has microbial toxicity. However, the effects of a phenol spill on the microbial community are not clear. The present study explored the changes of bacterial communities in river and fish pond sediments after a phenol spill. The bacterial richness and diversity in river sediments were lower on day 30 (36 days after the spill) than on day 0, while they increased in fish pond sediments. The structures and functions of bacterial communities in both river and fish pond sediments were changed, and a more dramatical variation was detected in fish pond sediments. In river sediments, Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Nitrospirae were the major bacterial phyla, and Chloroflexi was enriched. In fish pond sediments, genera Brevibacillus dominated bacterial communities initially, and bacterial composition showed a dramatic change on day 30. Most predicted metabolism functions, as well as genetic information processing functions of translation, replication, and repair, were enhanced in both river and fish pond sediments, while they showed an opposite change trend for xenobiotic degradation function. This work could strengthen our understanding of the effects of phenol spills on sediment bacterial communities in both lotic and lentic ecosystems.


Asunto(s)
Microbiota , Ríos , Animales , Sedimentos Geológicos , Fenol , Estanques , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA