Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7943): 280-286, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631649

RESUMEN

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

2.
Nature ; 603(7900): 265-270, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264758

RESUMEN

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

3.
Proc Natl Acad Sci U S A ; 119(12): e2118573119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290119

RESUMEN

Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of SN2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control.


Asunto(s)
Catenanos , Rotaxanos , Catenanos/química , Cinética , Rotaxanos/química
4.
J Am Chem Soc ; 145(33): 18402-18413, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578165

RESUMEN

Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.

5.
Histopathology ; 82(5): 779-788, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36635954

RESUMEN

AIMS: To investigate tertiary lymphoid structures (TLSs) in ductal carcinoma in situ (DCIS) of the breast and their correlation with pathological features, immune cell markers and clinical outcomes. METHODS AND RESULTS: Morphological identification of TLSs in 198 DCIS cases incorporated B and T cell zones with high endothelial venules. TLS positivity was defined as ≥ 1 TLSs in lesional areas, while TLS area percentage was divided into two categories: low (TLSs < 5%) and high (TLSs ≥ 5%). Previously reported biomarkers included ER, PR, HER2, CD68, CD163, CD4, CD8 and PD-L1. TLSs were observed in 24.7% (49 of 198) of cases, with a mean diameter of 0.44 mm (median = 0.4 mm, range = 0.12-1.43 mm). TLSs were significantly associated with higher nuclear grade, presence of necrosis, hormone receptor negativity/HER2 positivity, triple negativity, tumour infiltrating lymphocytes (TILs) and immune related biomarkers such as FOXP3, CD163, CD4 and CD4/CD8 ratio (all P < 0.05). There were no significant associations between TLSs and recurrence, but a combination of TLSshigh with FOXP3+ , CD4high , CD4/CD8 ratiohigh and CD68high individually, compared with all other combinations, disclosed significantly poorer disease-free survival (DFS) for ipsilateral invasive recurrence (IIR) on both Kaplan-Meier and multivariable Cox regression analyses (all P < 0.05). CONCLUSIONS: TLSs in DCIS were associated with unfavourable prognostic features, TILs and immune cell markers in our study. TLSshigh /FoxP3+ , TLSshigh /CD4high , TLSshigh /(CD4/CD8) ratiohigh and TLSshigh /CD68high were independent factors for poorer DFS for IIR. Further exploration of the pathological significance of TLSs may provide a clinical basis for their recognition as an important structure and functional unit in the tumour immune microenvironment.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Estructuras Linfoides Terciarias , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/patología , Estructuras Linfoides Terciarias/patología , Pronóstico , Biomarcadores , Linfocitos Infiltrantes de Tumor/patología , Microambiente Tumoral , Factores de Transcripción Forkhead , Neoplasias de la Mama/patología
6.
Angew Chem Int Ed Engl ; 62(1): e202211387, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36131604

RESUMEN

The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.


Asunto(s)
Paraquat , Viológenos , Paraquat/química
7.
J Am Chem Soc ; 144(50): 23168-23178, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36507773

RESUMEN

Molecular recognition, based on noncovalent bonding interactions, plays a central role in directing supramolecular phenomena in both chemical and biological environments. The identification and investigation of weakly associated recognition motifs, however, remains a major challenge, especially when the motifs are interlinked with and obscured by other robust binding modes in complicated systems. For example, although the host-guest recognition between the radical cations of both cyclobis(paraquat-p-phenylene) (CBPQT) and 4,4'-bipyridinium (BIPY) salts has been thoroughly investigated, the question of whether other binding modes exist between these two positively charged entities is the subject of some debate because of the complexity and dynamic nature of this supramolecular system. In order to address this conundrum, we have synthesized a [2]catenane─formed by mechanical interlocking between CBPQT and another BIPY-containing ring─which enhances the weak interactions between components and reduces significantly the complexity of the system for easier characterization. By employing this [2]catenane as a model compound, we have performed a full-spectrum investigation of radical interactions and revealed unambiguously a total of three possible binding modes between CBPQT and BIPY─to be specific, a bisradical tetracationic, a trisradical tricationic, and a bisradical dicationic association─as demonstrated by various methods of characterization including UV/vis/NIR, EPR, and NMR spectroscopies, electrochemical measurements and X-ray crystallography. The two newly discovered bisradical binding modes have potential applications in the construction of self-assembled materials and in mediating supramolecular catalysis. The mechanical bond-assisted approach used in this research is broadly applicable to investigating noncovalent bonding interactions.


Asunto(s)
Espectroscopía de Resonancia Magnética , Cationes/química , Cristalografía por Rayos X
8.
J Am Chem Soc ; 143(38): 15688-15700, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34505510

RESUMEN

The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.

9.
J Am Chem Soc ; 143(21): 8000-8010, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34028258

RESUMEN

Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.

10.
J Am Chem Soc ; 143(7): 2886-2895, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33577309

RESUMEN

The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy, called the electrostatic anchor, formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold-molecule-gold junctions. We have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high-conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox-switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.

11.
J Am Chem Soc ; 143(24): 9129-9139, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34080831

RESUMEN

For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.


Asunto(s)
Ciclodextrinas/química , Estructuras Metalorgánicas/química , Ciclodextrinas/síntesis química , Dimerización , Estructuras Metalorgánicas/síntesis química , Conformación Molecular , Procesos Fotoquímicos , Estereoisomerismo
12.
J Am Chem Soc ; 143(22): 8476-8487, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043344

RESUMEN

Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.

13.
Histopathology ; 79(2): 139-159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33400265

RESUMEN

Breast cancer is the most common malignancy and the leading cause of cancer death in females worldwide. Treatment is challenging, especially for those who are triple-negative. Increasing evidence suggests that diverse immune populations are present in the breast tumour microenvironment, which opens up avenues for personalised drug targets. Historically, our investigations into the immune constitution of breast tumours have been restricted to analyses of one or two markers at a given time. Recent technological advances have allowed simultaneous labelling of more than 35 markers and detailed profiling of tumour-immune infiltrates at the single-cell level, as well as determining the cellular composition and spatial analysis of the entire tumour architecture. In this review, we describe emerging technologies that have contributed to the field of breast cancer diagnosis, and discuss how to interpret the vast data sets obtained in order to effectively translate them for clinically relevant use.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/diagnóstico , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Inmunohistoquímica/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Pronóstico , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología
14.
Acta Pharmacol Sin ; 42(11): 1930-1941, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34462563

RESUMEN

Intracellular Staphylococcus aureus (S. aureus) often causes clinical failure and relapse after antibiotic treatment. We previously found that 20(S)-ginsenoside Rh2 [20(S)-Rh2] enhanced the therapeutic effect of quinolones in a mouse model of peritonitis, which we attributed to the increased concentrations of quinolones within bacteria. In this study, we investigated the enhancing effect of 20(S)-Rh2 on levofloxacin (LVF) from a perspective of intracellular bacteria. In S. aureus 25923-infected mice, coadministration of LVF (1.5 mg/kg, i.v.) and 20(S)-Rh2 (25, 50 mg/kg, i.g.) markedly increased the survival rate, and decreased intracellular bacteria counts accompanied by increased accumulation of LVF in peritoneal macrophages. In addition, 20(S)-Rh2 (1, 5, 10 µM) dose-dependently increased the uptake and accumulation of LVF in peritoneal macrophages from infected mice without drug treatment. In a model of S. aureus 25923-infected THP-1 macrophages, we showed that 20(S)-Rh2 (1, 5, 10 µM) dose-dependently enhanced the intracellular antibacterial activity of LVF. At the cellular level, 20(S)-Rh2 increased the intracellular accumulation of LVF by inhibiting P-gp and BCRP. PK-PD modeling revealed that 20(S)-Rh2 altered the properties of the cell but not LVF. At the subcellular level, 20(S)-Rh2 did not increase the distribution of LVF in lysosomes but exhibited a stronger sensitizing effect in acidic environments. Molecular dynamics (MD) simulations showed that 20(S)-Rh2 improved the stability of the DNA gyrase-LVF complex in lysosome-like acidic conditions. In conclusion, 20(S)-Rh2 promotes the cellular pharmacokinetics and intracellular antibacterial activities of LVF against S. aureus through efflux transporter inhibition and subcellular stabilization, which is beneficial for infection treatment.


Asunto(s)
Antibacterianos/farmacocinética , Ginsenósidos/farmacocinética , Líquido Intracelular/metabolismo , Levofloxacino/farmacocinética , Staphylococcus aureus/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Femenino , Humanos , Líquido Intracelular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Células THP-1
15.
J Clin Ultrasound ; 49(6): 527-532, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33786835

RESUMEN

PURPOSE: A Killian-Jamieson diverticulum (KJD) may be mistaken for a thyroid nodule on ultrasound (US). The purpose of this retrospective study was to search for specific US features that would help differentiate between KJD and thyroid nodules. METHODS: A total of 12 patients with KJD who had undergone an US examination of the neck were identified. The size, shape, boundary, echopattern, location, color flow signals on color Doppler US of KJD and the relationship between the lesion and esophageal wall were analyzed. The change of size, shape and internal echotexture were also observed when the lesion was compressed with the probe and when the patient was asked to drink water. RESULTS: All KJD were confirmed by barium esophagography. All KJD were posterior to the left thyroid lobe on US, and were associated with a semicircular hypoechoic anterior wall. The internal echotexture was heterogeneous. In eight cases, the connection to the esophageal wall was seen. When compressing with the US probe or when the patients swallowed water, the size, shape or internal echotexture of the lesion changed. CONCLUSION: The specific criteria for US diagnosis of KJD included the connection to the esophageal wall and the fact that the internal echotexture, shape and size of KJD changed in real-time when the patient swallowed water or when the lesion was compressed with the transducer.


Asunto(s)
Divertículo de Zenker/diagnóstico por imagen , Adulto , Diagnóstico Diferencial , Esófago/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Nódulo Tiroideo/diagnóstico por imagen , Ultrasonografía
16.
Angew Chem Int Ed Engl ; 60(32): 17587-17594, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34031957

RESUMEN

The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo-binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co-crystallization and concomitant co-precipitation between [PtCl6 ]2- dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6 ]2- dianion recognition is driven by weak [Pt-Cl⋅⋅⋅H-C] hydrogen bonding and [Pt-Cl⋅⋅⋅C=O] ion-dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt- and Pd- or Rh-based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6 ]2- dianions from a mixture of [PtCl6 ]2- , [PdCl4 ]2- , and [RhCl6 ]3- anions. This protocol could be exploited to recover platinum from spent vehicular three-way catalytic converters and other platinum-bearing metal waste.

17.
Angew Chem Int Ed Engl ; 60(48): 25454-25462, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34342116

RESUMEN

Complexation between a viologen radical cation (V.+ ) and cyclobis(paraquat-p-phenylene) diradical dication (CBPQT2(.+) ) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair of V.+ using radical-pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+ ) in a size-matched bisradical dicationic host - namely, cyclobis(paraquat-2,6-naphthalene)2(.+) , i.e., CBPQN2(.+) . Central to this dual recognition process was the choice of 2,6-bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations in CBPQN2(.+) suitable for binding two MV.+ with relatively short (3.05-3.25 Å) radical-pairing distances. The size-matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the two MV.+ in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex - namely, [(MV)2 ⊂CBPQN]4(.+) - in MeCN was confirmed by VT 1 H NMR, as well as by EPR spectroscopy. The solid-state superstructure of [(MV)2 ⊂CBPQN]4(.+) reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three different V.+ , suggesting that localization of the radical-pairing interactions has a strong influence on the packing of the two MV.+ inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host-guest radical-pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox-switchable recognition motif for the construction of MIMs and AMMs.

18.
BMC Genomics ; 21(1): 81, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992199

RESUMEN

BACKGROUND: Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. RESULTS: Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). CONCLUSIONS: The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.


Asunto(s)
Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos , Terpenos/metabolismo , Transcriptoma , Zanthoxylum/genética , Zanthoxylum/metabolismo , Vías Biosintéticas , Biología Computacional/métodos , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Especificidad de Órganos
19.
J Am Chem Soc ; 142(47): 20152-20160, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33180476

RESUMEN

Suitanes are a class of mechanically interlocked molecules (MIMs) that consist of two components: a body with limbs protruding outward and a suit that fits appropriately around it, so that there is no easy way for the suit to be removed from the body. Herein, we report the synthesis and characterization of a suit[3]ane, which contains a benzotrithiophene derivative (THBTT) with three protruding hexyl chains as the body and a 3-fold symmetric, extended pyridinium-based cage, namely, HexaCage6+, as the suit. Central to its realization is effective templation, provided by THBTT during cage formation, an observation that has been supported by the strong binding constant between benzotrithiophene (BTT) and the empty cage. The solid-state structure of the suit[3]ane reveals that the body is confined within the suit's cavity with its alkyl chains protruding outward through the orifices in the cage. Notably, such a seemingly unstable molecule, having three flexible alkyl chains as its only protruding limbs, does not dissociate after prolonged heating in CD3CN at 100 °C under pressure for 7 days. No evidence for guest exchange with the host was observed at this temperature in a 2:1 mixture of THBTT and HexaCage6+ in CD3CN. The results indicate that flexible protruding limbs are sufficient for a suit[3]ane to remain mechanically stable even at high temperatures in solution.


Asunto(s)
Biflavonoides/química , Catequina/análogos & derivados , Acetonitrilos/química , Catequina/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Piridinas/química , Temperatura
20.
J Am Chem Soc ; 142(39): 16849-16860, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32886881

RESUMEN

One ring threaded by two other rings to form a non-intertwined ternary ring-in-rings motif is a challenging task in noncovalent synthesis. Constructing multicolor photoluminescence systems with tunable properties is also a fundamental research goal, which can lead to applications in multidimensional biological imaging, visual displays, and encryption materials. Herein, we describe the design and synthesis of binary and ternary ring-in-ring(s) complexes, based on an extended tetracationic cyclophane and cucurbit[8]uril. The formation of these complexes is accompanied by tunable multicolor fluorescence outputs. On mixing equimolar amounts of the cyclophane and cucurbit[8]uril, a 1:1 ring-in-ring complex is formed as a result of hydrophobic interactions associated with a favorable change in entropy. With the addition of another equivalent of cucurbit[8]uril, a 1:2 ring-in-rings complex is formed, facilitated by additional ion-dipole interactions involving the pyridinium units in the cyclophane and the carbonyl groups in cucurbit[8]uril. Because of the narrowing in the energy gaps of the cyclophane within the rigid hydrophobic cavities of cucurbit[8]urils, the binary and ternary ring-in-ring(s) complexes emit green and bright yellow fluorescence, respectively. A series of color-tunable emissions, such as sky blue, cyan, green, and yellow with increased fluorescence lifetimes, can be achieved by simply adding cucurbit[8]uril to an aqueous solution of the cyclophane. Notably, the smaller cyclobis(paraquat-p-phenylene), which contains the same p-xylylene linkers as the extended tetracationic cyclophane, does not form ring-in-ring(s) complexes with cucurbit[8]uril. The encapsulation of this extended tetracationic cyclophane by both one and two cucurbit[8]urils provides an incentive to design and synthesize more advanced supramolecular systems, as well as opening up a feasible approach toward achieving tunable multicolor photoluminescence with single chromophores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA