Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7963): 94-101, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100916

RESUMEN

Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Carbono , Bosques , Nitrógeno , Suelo , Árboles , Carbono/metabolismo , Nitrógeno/metabolismo , Suelo/química , Árboles/clasificación , Árboles/metabolismo
2.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990962

RESUMEN

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Asunto(s)
Biodiversidad , Carbono , Gases de Efecto Invernadero , Plantas , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Ecosistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Metano/metabolismo , Efecto Invernadero
3.
J Neurosci Res ; 102(1): e25283, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284859

RESUMEN

Spinal cord injury (SCI) is a highly disabling neurological disorder that is difficult to treat due to its complex pathophysiology and nerve regeneration difficulties. Hence, effective SCI treatments are necessary. Olfactory ensheathing cells (OECs), glial cells derived from the olfactory bulb or mucosa, are ideal candidates for SCI treatment because of their neuroprotective and regenerative properties, ample supply, and convenience. In vitro, animal model, and human trial studies have reported discoveries on OEC transplantation; however, shortcomings have also been demonstrated. Recent studies have optimized various OEC transplantation strategies, including drug integration, biomaterials, and gene editing. This review aims to introduce OECs mechanisms in repairing SCI, summarize the research progress of OEC transplantation-optimized strategies, and provide novel research ideas for SCI treatment.


Asunto(s)
Edición Génica , Traumatismos de la Médula Espinal , Animales , Humanos , Regeneración Nerviosa , Neuroglía , Neuroprotección , Traumatismos de la Médula Espinal/terapia
4.
Chemistry ; 30(22): e202304268, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335035

RESUMEN

High-quality conjugated microporous polymer (CMP) films with orientation and controlled structure are extremely desired for applications. Here, we report the effective construction of CMP 3D composite films (pZn/PTPCz) with a controlled porosity structure and preferred orientation using the template-assisted electropolymerization (EP) approach for the first time. The structure of pZn/PTPCz composite thin films and nitrophenol sensing performance were thoroughly studied. When compared to the control CMP film made on flat indium tin oxide (ITO) substrates, the as-prepared pZn/PTPCz composite films showed significantly enhanced fluorescent intensity and much better sensing performance for the model explosive. This was attributed to the metal-enhanced fluorescence (MEF) of porous nanostructured zinc (pZn) and the additional macroporosity of the pZn/PTPCz composite films. This work provides a feasible approach for creating oriented 3D CMP-based thin films for advanced applications.

6.
Environ Res ; 241: 117565, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972810

RESUMEN

Changes in precipitation patterns can significantly affect belowground processes. Although soil extracellular enzymes play a vital role in several biogeochemical processes, our knowledge of how precipitation changes affect soil extracellular enzyme activity (EEA) and stoichiometry remains insufficient. In this study, we investigated the activities of C-acquiring enzyme (ß-1,4-glucosidase), N-acquiring enzymes (ß-N-acetylglucosaminidase and leucine aminopeptidase), and P-acquiring enzyme (acid phosphatase) under different precipitation scenarios [ambient precipitation (CK), 30% decrease in precipitation (moderate DPT), 50% decrease in precipitation (extreme DPT), 30% increase in precipitation (moderate IPT), and 50% increase in precipitation (extreme IPT)] in a poplar plantation. We found soil EEA exhibited more pronounced increases to moderate IPT compared to moderate DPT (positive asymmetry), the opposite trend (negative asymmetry) was observed under extreme precipitation; whereas soil EEA C:N:P stoichiometry exhibited negative asymmetry at moderate precipitation changes, and exhibited positive asymmetry at extreme precipitation changes. Under moderate precipitation changes, the asymmetry of soil EEA was mainly regulated by asymmetries of respective microbial biomass and litter mass; the asymmetry of soil EEA stoichiometry was mainly regulated by asymmetries of respective soil stoichiometric ratios and litter mass. Furthermore, under extreme precipitation changes, the asymmetries of soil EEA and stoichiometry were best explained by the asymmetry of soil moisture. Our results provide the first evidence of double asymmetric responses of soil EEA and stoichiometry to precipitation changes and highlight the need to consider this asymmetry when modeling the dynamics of biogeochemical cycling in forest ecosystems.


Asunto(s)
Ecosistema , Suelo , Microbiología del Suelo , Biomasa , Bosques , Nitrógeno , Carbono
7.
Int J Biometeorol ; 68(4): 731-742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197985

RESUMEN

Numerous studies have shown that geomagnetic activity (GMA) contributes to the development and escalation of cardiovascular disease (CVD), as well as increased morbidity and mortality. However, the underlying molecular mechanisms and approaches for understanding GMA remain unclear. This study aimed to investigate the impact of GMA on oxidative stress and inflammatory responses. Myocardial ischemia/reperfusion injury (MI/RI) rat models were created under various geomagnetic field conditions. The range of cardiac function, markers of myocardial injury, inflammatory factors, and the TLR4/NF-κB signaling pathway were measured after the 24-h period. The findings showed that weak GMA significantly improved cardiac function in the MI/RI rat model and reduced the size of myocardial infarction and creatine kinase (CK) and lactic dehydrogenase (LDH) levels. Additionally, weak GMA enhanced superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content. Furthermore, weak GMA significantly reduced the levels of the myocardial inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Conversely, the effects observed under severe GMA conditions were opposite to those observed under weak GMA. Western blot and qPCR analysis demonstrated that weak GMA led to a significant downregulation of TLR4, TRAF6, NF-κB, TNF-α, and MCP-1 in the MI/RI rat models. In contrast to weak GMA, severe GMA increased TLR4, TRAF6, NF-κB, and TNF-α expression. This study suggested that weak GMA had a limiting effect on MI/RI rat models, whereas severe GMA exacerbated injury in MI/RI rats. These effects were associated with oxidative stress and inflammatory responses and might potentially involve the TLR4/NF-κB signaling pathway.


Asunto(s)
Daño por Reperfusión Miocárdica , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo
8.
J Environ Manage ; 351: 119941, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159313

RESUMEN

Anthropogenic phosphorus (P) input into terrestrial soils have been greatly increased, with potential effects on both above- and belowground carbon (C) cycling processes. However, uncertainty about how plant-soil-microbe systems respond to P fertilization makes it difficult to predict the effects of anthropogenic P input on the terrestrial C cycling. In this study, we conducted a global meta-analysis, examining 1183 observations from 142 publications. The findings revealed that P fertilization consistently promoted C cycling variables in plant-soil-microbe systems, resulting in improvements ranging from 7.6% to 49.8% across various ecosystem types. Notably, these positive effects of P fertilization were more pronounced with higher application rates and longer experimental durations. As the background P contents increased, the functions of P fertilization in C cycling variables shifted from positive to negative. Structural equation modeling demonstrated that changes in plant inputs predominantly drove the positive impacts of P fertilization rate and experimental duration, as well as the negative impacts of background P contents on soil respiration and microbial biomass C responses to P fertilization. Our study demonstrated the coherent responses of terrestrial C cycling processes to P fertilization and highlighted the significance of P fertilization boosting C cycling processes in P-deficient ecosystems. We suggested that minimizing the application of P fertilization in P-rich environments would enhance C sequestration and reduce P-induced environmental pollution.


Asunto(s)
Ecosistema , Fósforo , Fósforo/química , Carbono/química , Nitrógeno/análisis , Suelo/química , Plantas , Microbiología del Suelo , Fertilización
9.
J Environ Manage ; 354: 120280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350280

RESUMEN

Coal mining is one of the human activities that has the greatest impact on the global carbon (C) cycle and biodiversity. Biochar and plant growth-promoting bacteria (PGPB) have been both used to improve coal mining degraded soils; however, it is uncertain whether the effects of biochar application on soil respiration and microbial communities are influenced by the presence or absence of PGPB and soil nitrogen (N) level in coal mining degraded soils. A pot experiment was carried out to examine whether the effects of biochar addition (0, 1, 2 and 4% of soil mass) on soil properties, soil respiration, maize growth, and microbial communities were altered by the presence or absence of PGPB (i.e. Sphingobium yanoikuyae BJ1) (0, 200 mL suspension (2 × 106 colony forming unit (CFU) mL-1)) and two soil N levels (N0 and N1 at 0 and 0.2 g kg-1 urea- N, respectively). The results showed the presence of BJ1 enhanced the maize biomass relative to the absence of BJ1, particularly in N1 soils, which was related to the discovery of Lysobacter and Nocardioides that favor plant growth in N1 soils. This indicates a conversion in soil microbial communities to beneficial ones. The application of biochar at a rate of 1% decreased the cumulative CO2 regardless of the presence or absence of BJ1; BJ1 increased the ß-glucosidase (BG) activities, and BG activities were also positively correlated with RB41 strain with high C turnover in N1 soils, which indicates that the presence of BJ1 improves the C utilization rates of RB41, decreasing soil C mineralization. Our results highlight that biochar addition provided environmental benefits in degraded coal mining soils, and the direction and magnitude of these effects are highly dependent on the presence of PGPB and the soil N level.


Asunto(s)
Minas de Carbón , Zea mays , Humanos , Dióxido de Carbono/metabolismo , Suelo , Microbiología del Suelo , Carbón Orgánico/metabolismo , Bacterias
10.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806409

RESUMEN

Drug-induced enteritis is an inflammatory disease changing in the morphology and function of the intestine as a result of medicine damage. With the increase in drug abuse in recent years, the incidence of drug-associated enteritis accordingly rises and becomes an important disease affecting the health and life quality of patients. Hence, elucidating the pathogenesis of drug-induced enteritis and finding cost-effective diagnostic and therapeutic tools have become current research focuses. The gut microbiota and metabolites regulate the immune response, playing a key role in the maintenance of homeostasis in the intestine. Numerous studies have found that many medicines can induce intestinal flora disorders, which are closely related to the development of drug-induced enteritis. Therefore, this paper analyses the role of gut microbiota and metabolites in regulating the immune response, and provides basic research direction and clinical reference strategies for drug-induced enteritis, taking into account the existing applications and perspectives.


Asunto(s)
Enteritis , Microbioma Gastrointestinal , Humanos , Intestinos , Enteritis/inducido químicamente , Inmunidad
11.
Ecotoxicol Environ Saf ; 266: 115579, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856979

RESUMEN

In the background of climate warming, the demand for improving soil quality and carbon (C) sequestration is increasing. The application of biochar to soil has been considered as a method for mitigating climate change and enhancing soil fertility. However, it is uncertain whether the effects of biochar application on C-mineralization and N transformation are influenced by the presence or absence of plant growth-promoting bacteria (PGPB) and soil nitrogen (N) level. An incubation study was conducted to investigate whether the effects of biochar application (0 %, 1 %, 2 % and 4 % of soil mass) on soil respiration, N status, and microbial attributes were altered by the presence or absence of PGPB (i.e., Sphingobium yanoikuyae BJ1) under two soil N levels (N0 and N1 soils as created by the addition of 0 and 0.2 g kg-1 urea- N, respectively). The results showed that biochar, BJ1 strain and their interactive effects on cumulative CO2 emissions were not significant in N0 soils, while the effects of biochar on the cumulative CO2 emissions were dependent on the presence or absence of BJ1 in N1 soils. In N1 soils, applying biochar at 2 % and 4 % increased the cumulative CO2 emissions by 141.0 % and 166.9 %, respectively, when BJ1 was absent. However, applying biochar did not affect CO2 emissions when BJ1 was present. In addition, the presence of BJ1 generally increased ammonium contents in N0 soils, but decreased nitrate contents in N1 soils relative to the absence of BJ1, which indicates that the combination of biochar and BJ1 is beneficial to play the N fixation function of BJ1 in N0 soils. Our results highlight that biochar addition influences not only soil C mineralization but also soil available N, and the direction and magnitude of these effects are highly dependent on the presence of PGPB and the soil N level.


Asunto(s)
Carbono , Suelo , Nitrógeno/análisis , Dióxido de Carbono/análisis , Carbón Orgánico/farmacología , Bacterias
12.
J Environ Manage ; 344: 118474, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364496

RESUMEN

Pulp mill biosolids (hereafter 'biosolids') could be used as an organic amendment to improve soil fertility and promote crop growth; however, it is unclear how the application of biosolids affects soil greenhouse gas emissions and the mechanisms underlying these effects. Here, we conducted a 2-year field experiment on a 6-year-old hybrid poplar plantation in northern Alberta, Canada, to compare the effects of biosolids, conventional mineral fertilizer (urea), and urea + biosolids on soil CO2, CH4 N2O emissions, as well as soil chemical and microbial properties. We found that the addition of biosolids increased soil CO2 and N2O emissions by 21 and 17%, respectively, while urea addition increased their emissions by 30 and 83%, respectively. However, the addition of urea did not affect soil CO2 emissions when biosolids were also applied. The addition of biosolids and biosolids + urea increased soil dissolved organic carbon (DOC) and microbial biomass C (MBC), while urea addition and biosolids + urea addition increased soil inorganic N, available P and denitrifying enzyme activity (DEA). Furthermore, the CO2 and N2O emissions were positively, while the CH4 emissions were negatively associated with soil DOC, inorganic N, available phosphorus, MBC, microbial biomass N, and DEA. In addition, soil CO2, CH4 and N2O emissions were also strongly associated with soil microbial community composition. We conclude that the application of the combination of biosolids and chemical N fertilizer (urea) could be a beneficial approach for both the disposal and use of pulp mill wastes, by reducing greenhouse gas emissions and improving soil fertility.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Biosólidos , Dióxido de Carbono/análisis , Urea , Fertilizantes , Nitrógeno/análisis , Alberta , Óxido Nitroso/análisis , Agricultura , Metano/análisis
13.
Glob Chang Biol ; 28(24): 7353-7365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056683

RESUMEN

Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.


Asunto(s)
Compuestos de Amonio , Fósforo , Fósforo/química , Ecosistema , Nitratos , Nitrógeno/análisis , Suelo/química , Carbono/química , Biomasa , Microbiología del Suelo , Plantas
14.
Glob Chang Biol ; 28(21): 6446-6461, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35971768

RESUMEN

Soil microbes make up a significant portion of the genetic diversity and play a critical role in belowground carbon (C) cycling in terrestrial ecosystems. Soil microbial diversity and organic C are often tightly coupled in C cycling processes; however, this coupling can be weakened or broken by rapid global change. A global meta-analysis was performed with 1148 paired comparisons extracted from 229 articles published between January 1998 and December 2021 to determine how nitrogen (N) fertilization affects the relationship between soil C content and microbial diversity in terrestrial ecosystems. We found that N fertilization decreased soil bacterial (-11%) and fungal diversity (-17%), but increased soil organic C (SOC) (+19%), microbial biomass C (MBC) (+17%), and dissolved organic C (DOC) (+25%) across different ecosystems. Organic N (urea) fertilization had a greater effect on SOC, MBC, DOC, and bacterial and fungal diversity than inorganic N fertilization. Most importantly, soil microbial diversity decreased with increasing SOC, MBC, and DOC, and the absolute values of the correlation coefficients decreased with increasing N fertilization rate and duration, suggesting that N fertilization weakened the linkage between soil C and microbial diversity. The weakened linkage might negatively impact essential ecosystem services under high rates of N fertilization; this understanding is important for mitigating the negative impact of global N enrichment on soil C cycling.


Asunto(s)
Nitrógeno , Suelo , Bacterias/genética , Carbono , Ecosistema , Fertilización , Nitrógeno/análisis , Microbiología del Suelo , Urea
15.
Environ Res ; 212(Pt D): 113279, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561834

RESUMEN

Inconsistencies were discovered in the findings regarding the effects of meteorological factors on tuberculosis (TB). This study conducted a systematic review of published studies on the relationship between TB and meteorological factors and used a meta-analysis to investigate the pooled effects in order to provide evidence for future research and policymakers. The literature search was completed by August 3rd, 2021, using three databases: PubMed, Web of Science and Embase. Relative risks (RRs) in included studies were extracted and all effect estimates were combined together using meta-analysis. Subgroup analyses were carried out based on the resolution of exposure time, regional climate, and national income level. A total of eight studies were included after screening for inclusion and exclusion criteria. Our results show that TB risk was positively correlated with precipitation (RR = 1.32, 95% CI: 1.14, 1.51), while temperature (RR = 1.15, 95% CI: 1.00, 1.32), humidity (RR = 1.05, 95% CI: 0.99, 1.10), air pressure (RR = 0.89, 95% CI: 0.69, 1.14) and sunshine duration (RR = 0.95, 95% CI: 0.80, 1.13) all had no statistically significant correlation. Subgroup analysis shows that quarterly measure resolution, low and middle Human Development Index (HDI) level and subtropical climate increase TB risk not only in precipitation, but also in temperature and humidity. Moreover, less heterogeneity was observed in "high and extremely high" HDI areas and subtropical areas than that in other subgroups (I2 = 0%). Precipitation, a subtropical climate, and a low HDI level are all positive influence factors to tuberculosis. Therefore, residents and public health managers should take precautionary measures ahead of time, especially in extreme weather conditions.


Asunto(s)
Tuberculosis , Clima , Humanos , Humedad , Conceptos Meteorológicos , Riesgo , Tuberculosis/epidemiología , Tuberculosis/etiología
16.
Glob Chang Biol ; 27(16): 3846-3858, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993581

RESUMEN

Global environmental changes have strongly affected forest demographic rates, particularly amplified tree mortality in high latitude forests (e.g., two to five times greater mortality probability over the half-century). Although forest functional composition is critical for multitrophic biodiversity and ecosystem functioning, it remains unclear how functional composition has changed over time across large high latitude regions, which have been warming twice the rate of the globe as a whole. Using extensive spatial and long-term forest inventory data (17,107 plots monitored 1951-2016) across Canada, we found that after accounting for stand age-dependent functional shifts, functional composition shifted toward fast-growing deciduous broadleaved trees and higher drought tolerance over time. The temporal shift toward deciduous broadleaved trees was consistent across the baseline climate. However, over the study period, drought tolerance increased (or shade tolerance decreased) by 300% in colder boreal regions, while drought tolerance did not shift significantly in warmer temperate climates. A further analysis accounting for temporal changes in atmospheric CO2 , temperature, and water availability indicated that the functional composition of colder regions shifted toward drought tolerance more rapidly with rising CO2 than warmer regions, suggesting the greater vulnerability of boreal forests than temperate forests under ongoing global environmental changes. Future ecosystem management practices should consider spatial differences in functional responses to global environmental change, focusing on high latitude forests experiencing higher rates of warming and compositional changes.


Asunto(s)
Cambio Climático , Ecosistema , Canadá , Bosques , Taiga
17.
Pak J Pharm Sci ; 34(5): 1685-1691, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34803003

RESUMEN

At present, the mechanism for clopidogrel resistance (CR) is incompletely understood. Here, we aimed to analyze of the association of plasma concentration of clopidogrel active metabolites (CAM) and CYP2C19 genetic polymorphism with CR. We assigned 77 patients to receive CLP at a loading dose of 300mg on day 1, followed by 75mg per day from day 2 to day 6. Three peripheral venous blood samples were collected for analysis. Our results showed that plasma concentration of CAM in extensive metabolizers (EMs) group (2.48(1.31, 5.67) ng/mL) was higher than that in intermediate metabolizers (IMs) group (1.44(1.18,3.55) ng/mL) and that in poor metabolizers (PMs) (1.18(1.12,1.33) ng/mL) group was the lowest (H=14.58, P=0.001). Besides, the incidence of CR in EMs group(11.1%) was lower than that in IMs group (20.0%) and that in IMs group was lower than that in PMs group (45.5%) (χ2=6.344, P=0.042). In addition, our findings confirmed that the incidence of chest tightness in IMs group (40.0%) and PMs group (50.0%) was higher than that in EMs group (9.1%) (P=0.015). Over the follow-up period, it was found that CYP2C19 and plasma concentration of CAM were related to the incidence of chest tightness. Our findings indicated that in addition to CYP2C19, plasma concentration of CAM may be an important factor in predicting CR.


Asunto(s)
Clopidogrel/farmacología , Citocromo P-450 CYP2C19/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Anciano , Citocromo P-450 CYP2C19/genética , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Estructura Molecular
18.
Nano Lett ; 19(6): 3527-3534, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31058513

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered as one of the most aggressive malignancies due to its unique microenvironment of which the cardinal histopathological feature is the remarkable desmoplasia of the stroma, taking up about 80% of the tumor mass. The desmoplastic stroma negatively affects drug diffusion and the infiltration of T cells, leading to an immunosuppressive microenvironment. However, this unique microenvironment can limit the physical spread of pancreatic cancer via a neighbor suppression effect. Here, a tumor central stroma targeting and microenvironment responsive strategy was applied to generate a nanoparticle coloading paclitaxel and phosphorylated gemcitabine. The designed nanoparticle disrupted the central stroma while preserving the external stroma, thereby promoting the antitumor effectiveness of chemotherapeutics. Additionally, the resulting nanoparticle can modulate the tumor immunosuppressive microenvironment by augmenting the number of cytotoxic T cells and restraining the percentage of T regulatory cells. The relatively intact external stroma can effectively maintain the neighbor suppression effect and prevent tumor metastasis. Combining stroma targeting with the delivery of stimuli-responsive polymeric nanoparticles embodies an effective tumor-tailored drug delivery system.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Paclitaxel/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/uso terapéutico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Nanopartículas/química , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/patología , Microambiente Tumoral/efectos de los fármacos , Gemcitabina
19.
Glob Chang Biol ; 25(4): 1482-1492, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30614140

RESUMEN

The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta-analysis using 446 paired observations from 95 published studies to evaluate the effects of plant and litter mixtures on Rs and its components. We found that total Rs and heterotrophic respiration (Rh) were, on average, greater in plant mixtures than expected from those of monocultures. These mixture effects increased with increasing species richness (SR) in both plant and litter mixtures. While the positive effects of species mixtures remained similar over time for total Rs, they increased over time for Rh in plant mixtures but decreased in litter mixtures. Despite the wide range of variations in mean annual temperature, annual aridity index, and ecosystem types, the plant mixture effects on total Rs and Rh did not change geographically, except for a more pronounced increase of total Rs in species mixtures with reduced water availability. Our structural equation models suggested that the positive effects of SR and stand age on total and Rh were driven by increased plant inputs and soil microbial biomass. Our results suggest that plant diversity loss has ubiquitous negative impacts on Rs, one of the fundamental carbon-cycle processes sustaining terrestrial element cycling and ecosystem function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA