Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(24): 4654-4673.e28, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334589

RESUMEN

Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.


Asunto(s)
Tejido Adiposo Pardo , Proteoma , Humanos , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Proteoma/metabolismo , Termogénesis/fisiología , Adiposidad , Obesidad/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo
2.
Mol Cell ; 84(4): 616-618, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364779

RESUMEN

Two recent studies by Liu et al.1 in Science and Shi et al.2 in this issue of Molecular Cell identify a mitochondrial GSH-sensing mechanism that couples SLC25A39-mediated GSH import to iron metabolism, advancing our understanding of nutrient sensing within organelles.


Asunto(s)
Hierro , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Glutatión/metabolismo , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
3.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759628

RESUMEN

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Complejo I de Transporte de Electrón , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteínas Serina-Treonina Quinasas , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal , Femenino
4.
J Virol ; 97(4): e0021023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975780

RESUMEN

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Asunto(s)
Alphacoronavirus , Caveolas , Clatrina , Pinocitosis , Internalización del Virus , Proteínas de Unión al GTP rab , Alphacoronavirus/fisiología , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Infecciones por Coronavirus/metabolismo , Concentración de Iones de Hidrógeno , Dinaminas/metabolismo , Caveolas/metabolismo , Colesterol/metabolismo , Clatrina/metabolismo , Pinocitosis/fisiología , Células Vero , Chlorocebus aethiops , Animales
5.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38391210

RESUMEN

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Asunto(s)
Nostoc , Rayos Ultravioleta , Humanos , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotosíntesis/fisiología
6.
BMC Microbiol ; 24(1): 79, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459431

RESUMEN

OBJECTIVE: To explore the changes and potential mechanisms of microbiome in different parts of the upper airway in the development of pediatric OSA and observe the impact of surgical intervention on oral microbiome for pediatric OSA. METHODS: Before adeno-tonsillectomy, we collected throat swab samples from different parts of the oropharynx and nasopharynx of 30 OSA patients and 10 non-OSA patients and collected throat swab samples from the oropharynx of the above patients one month after the adeno-tonsillectomy. The 16 S rRNA V3-V4 region was sequenced to identify the microbial communities. The correlation analysis was conducted based on clinical characteristics. RESULTS: There was a significant difference of alpha diversity in different parts of the upper airway of pediatric OSA, but this difference was not found in children with non-OSA. Beta diversity was significantly different between non-OSA and pediatric OSA. At the genus level, the composition of flora in different parts is different between non-OSA and pediatric OSA. The correlation analysis revealed that the relative abundance of Neisseria was significantly correlated with obstructive apnea hypopnea index. Furthermore, the functional prediction revealed that pathways related to cell proliferation and material metabolism were significantly different between non-OSA and pediatric OSA. Besides, the adeno-tonsillectomy has minimal impact on oral microbiota composition in short term. CONCLUSION: The changes in upper airway microbiome are highly associated with pediatric OSA. The relative abundance of some bacteria was significantly different between OSA and non-OSA. These bacteria have the potential to become new diagnostic and early warning biomarkers.


Asunto(s)
Microbiota , Apnea Obstructiva del Sueño , Humanos , Niño , Estudios Prospectivos , Apnea Obstructiva del Sueño/cirugía , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/microbiología , Nasofaringe , Orofaringe
7.
J Med Virol ; 96(3): e29468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38415499

RESUMEN

Cervical human papillomavirus (HPV) infection is believed to increase the risks of pregnancy failure and abortion, however, whether the uterine cavity HPV infection reduces pregnancy rate or increases miscarriage rate remains unclarified in infertile women undergoing assisted reproductive technology (ART) treatment. Therefore, we aimed to assess ART outcomes in the presence of intrauterine HPV. This was a hospital-based multicenter (five reproductive medicine centers) matched cohort study. This study involved 4153 infertile women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection treatment in five reproductive medicine centers between October 2018 and 2020. The spent embryo transfer media sample with endometrium tissue were collected and performed with flow-through hybridization and gene chips to detect HPV DNA. According to basic characteristics, HPV-positive and negative patients were matched in a ratio of 1:4 by age, body mass index transfer timing, transfer type, and number of embryos transferred. The primary outcome was pregnancy and clinical miscarriage rates in the transfer cycle underwent HPV detection. 92 HPV-positive and 368 HPV-negative patients were screened and analyzed statistically. Univariate analysis showed uterine cavity HPV infection resulted in lower rates of ongoing pregnancy (31.5% vs. 44.6%; p = 0.023), implantation (32.3% vs. 43.1%; p = 0.026), biochemical pregnancy (47.8% vs. 62.5%; p = 0.010), and clinical pregnancy (40.2% vs. 54.3%; p = 0.015) compared with HPV negative group. The infertile female with positive HPV also had a slightly higher frequency of biochemical miscarriage (15.9% vs. 13.0%; p = 0.610) and clinical miscarriage (24.3% vs. 15.5%; p = 0.188). These findings suggest that HPV infection in the uterine cavity is a high risk for ART failure. HPV screening is recommended before ART treatment, which may be benefit to improving pregnancy outcome.


Asunto(s)
Aborto Espontáneo , Infertilidad Femenina , Infecciones por Papillomavirus , Embarazo , Humanos , Masculino , Femenino , Infecciones por Papillomavirus/diagnóstico , Infertilidad Femenina/terapia , Virus del Papiloma Humano , Estudios de Cohortes , Semen , Transferencia de Embrión/métodos , Técnicas Reproductivas Asistidas , Fertilización In Vitro , Insuficiencia del Tratamiento
8.
Virol J ; 21(1): 123, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822405

RESUMEN

BACKGROUND: Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS: A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS: We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.


Asunto(s)
COVID-19 , Nomogramas , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/complicaciones , COVID-19/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Estudios de Cohortes , Anciano , Adulto , Hospitalización/estadística & datos numéricos , Medición de Riesgo , Síndrome Post Agudo de COVID-19
9.
Inorg Chem ; 63(1): 775-783, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134353

RESUMEN

Polysulfide-based multilevel memorizers are promising as novel memorizers, in which the occurrence of Sn2- relaxation is key for their multilevel memory. However, the effects of crystal packing and the side group of organic ligands on Sn2- relaxation are still ambiguous. In this work, ionic [Zn(S6)2·Zn2(Bipy)2SO4 (1), Zn(S6)2·Zn(Pmbipy)3 (2)] and neutral [ZnS6(Ombipy) (3), ZnS6(Phen)2 (4)] Zn/polysulfide/organic complexes with different packing modes and structures of organic ligands have been synthesized and were fabricated as memory devices. In both ionic and neutral Zn complexes, the S62- relaxation will be blocked by steric hindrances due to the packing of counter-cations and hydrogen-bond restrictions. Consequently, only the binary memory performances can be seen in FTO/1/Ag, FTO/2/Ag, and FTO/4/Ag, which originate from the more condensed packing of conjugated ligands upon electrical stimulus. Interestingly, FTO/3/Ag illustrates the unique thermally triggered reversible binary-ternary switchable memory performance. In detail, after introducing a methyl group on the 6'-position of bipyridine in ZnS6(Ombipy) (3), the ring-to-chain relaxation of S62- anions at room temperature will be inhibited, but it can happen at a higher temperature of 120 °C, which has been verified by elongated S-S lengths and the strengthened C-H···S hydrogen bond upon heating. The rules drawn in this work will provide a useful guide for the design of stimulus-responsive memorizers that can be applied in special industries such as automobile, oil, and gas industries.

10.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471343

RESUMEN

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Asunto(s)
Arsénico , Extracto de Ginkgo , Ginkgo biloba , Humanos , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Arsénico/toxicidad , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/análisis
11.
Ecotoxicol Environ Saf ; 272: 116053, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306815

RESUMEN

Organic UV filters, which are often found in the environment, have been the focus of much public health concern. 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most common organic UV filters present in the environment. However, few studies have investigated its developmental neurotoxic (DNT) effects and the underlying molecular mechanisms. In the present study, zebrafish embryos were exposed to low concentration of EHMC (0, 0.01, 0.1, 1 mg/L) in static water starting from 6 h post-fertilization (hpf). Results showed that EHMC exposure caused a reduction in somite count at 13 hpf, a diminishment in head-trunk angle at 30 hpf, a delay in hatching at 48 hpf, and a decrease in head depth and head length at both 30 and 48 hpf. Additionally, EHMC led to abnormal motor behaviors at various developmental stages including altered spontaneous movement at both 23 and 24 hpf, and decreased touch response at 30 hpf. Consistent with these morphological changes and motor behavior deficits, EHMC inhibited axonal growth of primary motor neurons at 30 and 48 hpf, and yielded subtle changes in muscle fiber length at 48 hpf, suggesting the functional relevance of structural changes. Moreover, EHMC exposure induced excessive cell apoptosis in the head and spinal cord regions, increased the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and reduced the level of glutathione (GSH). Defects of lateral line system neuromasts were also observed, but no structural deformity of blood vessels was seen in developing zebrafish. Abnormal expression of axonal growth-related genes (gap43, mbp, shha, and α1-tubulin) and apoptosis-related genes (bax/bcl-2 and caspase-3) revealed potential molecular mechanisms regarding the defective motor behaviors and aberrant phenotype. In summary, our findings indicate that EHMC induced developmental neurotoxicity in zebrafish, making it essential to assess its risks and provide warnings regarding EHMC exposure.


Asunto(s)
Perciformes , Pez Cebra , Animales , Pez Cebra/metabolismo , Cinamatos/farmacología , Cinamatos/toxicidad , Glutatión/metabolismo , Perciformes/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fertilización , Embrión no Mamífero , Larva
12.
Ecotoxicol Environ Saf ; 273: 116142, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394757

RESUMEN

BACKGROUND: The relationship between brominated flame retardants (BFRs) exposure and the human liver was still not well understood. METHODS: A total of 3108 participants (age > 12) from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016 were included as the study population, with nine BFRs exhibiting a detection rate of over 70% serving as the exposure factor. The singular effects and combined effects of BFRs exposure on liver injury, non-alcoholic fatty liver disease (NAFLD), and advanced hepatic fibrosis (AHF) were evaluated separately. Finally, COX regression was employed to explore the hazard ratios associated with individual BFRs. RESULTS: In our analysis of individual exposures, we found significant positive association of PBB153 with alanine aminotransferase (ALT), PBB153 with aspartate aminotransferase (AST), PBDE47, PBDE85, PBDE99, PBDE100, and PBDE154 with alkaline phosphatase (ALP), PBDE28 and PBB153 with gamma-glutamyl transaminase (GGT), PBB153 with the risk of NAFLD and AHF; and significant negative association of PBB153 with ALP, PBDE28, PBDE47, PBDE99, PBDE100, PBDE85, PBDE209, and PBDE154 with albumin (ALB), PBB153 with AST/ALT. The nonlinear analysis results from Restricted Cubic Spline (RCS) further validated these associations (all P<0.05). In the mixed analysis combining Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analysis, BFRs were positively associated with ALT (ß>0, P<0.001), GGT (ß>0, P<0.001), and the risk of NAFLD (OR>1, P=0.007). Conversely, BFRs exhibited significant negative correlations with ALP (ß<0, P<0.001), ALB (ß<0, P<0.001), and AST/ALT (ß<0, P<0.001). Furthermore, the COX regression analysis revealed that PBB153 had the highest hazard ratio among the BFRs. CONCLUSIONS: BFR exposure may increase the risk of liver injury and NAFLD, with no significant association with AHF risk. The impact of BFR exposure on liver health should not be overlooked, especially in individuals residing in impoverished areas.


Asunto(s)
Retardadores de Llama , Enfermedad del Hígado Graso no Alcohólico , Bifenilos Polibrominados , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis , Encuestas Nutricionales , Hígado , Fosfatasa Alcalina , Alanina Transaminasa , Cirrosis Hepática
13.
Environ Toxicol ; 39(3): 1350-1359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37966059

RESUMEN

Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.


Asunto(s)
Arsénico , Arsenitos , Melatonina , Ratas , Animales , Angiotensina II , Factor I del Crecimiento Similar a la Insulina , Melatonina/farmacología , Arsenitos/toxicidad , Fibronectinas , Músculo Esquelético , Atrofia
14.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892156

RESUMEN

Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of malignant tumor with a poor prognosis and low quality of life in the otolaryngology department. It has been found that microRNA (miRNA) plays an important role in the occurrence and development of various tumors. This study found that the expression level of miRNA-107 (miR-107) in HSCC was significantly reduced. Subsequently, we screened out the downstream direct target gene Neuronal Vesicle Trafficking Associated 1 (NSG1) related to miR-107 through bioinformatics analysis and found that the expression of NSG1 was increased in HSCC tissues. Following the overexpression of miR-107 in HSCC cells, it was observed that miR-107 directly suppressed NSG1 expression, leading to increased apoptosis, decreased proliferation, and reduced invasion capabilities of HSCC cells. Subsequent experiments involving the overexpression and knockdown of NSG1 in HSCC cells demonstrated that elevated NSG1 levels enhanced cell proliferation, migration, and invasion, while the opposite effect was observed upon NSG1 knockdown. Further investigations revealed that changes in NSG1 levels in the HSCC cells were accompanied by alterations in ERK signaling pathway proteins, suggesting a potential regulatory role of NSG1 in HSCC cell proliferation, migration, and invasion through the ERK pathway. These findings highlight the significance of miR-107 and NSG1 in hypopharyngeal cancer metastasis, offering promising targets for therapeutic interventions and prognostic evaluations for HSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hipofaríngeas , Sistema de Señalización de MAP Quinasas , MicroARNs , Humanos , Masculino , Apoptosis/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patología , Neoplasias Hipofaríngeas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Angew Chem Int Ed Engl ; 63(29): e202405476, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706228

RESUMEN

Despite the pivotal role of molecular oxygen (O2) activation in artificial photosynthesis, the activation efficiency is often restricted by sluggish exciton dissociation and charge transfer kinetics within polymer photocatalysts. Herein, we propose two tetrathiafulvalene (TTF)-based imine-linked covalent organic frameworks (COFs) with tailored donor-acceptor (D-A) structures, TTF-PDI-COF and TTF-TFPP-COF, to promote O2 activation. Because of enhanced electron push-pull interactions that facilitated charge separation and transfer behavior, TTF-PDI-COF exhibited superior photocatalytic activity in electron-induced O2 activation reactions over TTF-TFPP-COF under visible light irradiation, including the photosynthesis of (E)-3-amino-2-thiocyano-α,ß-unsaturated compounds and H2O2. These findings highlight the significant potential of the rational design of COFs with D-A configurations as suitable candidates for advanced photocatalytic applications.

16.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953224

RESUMEN

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3% (λ = 420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

17.
Angew Chem Int Ed Engl ; 63(20): e202402911, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38511343

RESUMEN

Memristors are essential components of neuromorphic systems that mimic the synaptic plasticity observed in biological neurons. In this study, a novel approach employing one-dimensional covalent organic framework (1D COF) films was explored to enhance the performance of memristors. The unique structural and electronic properties of two 1D COF films (COF-4,4'-methylenedianiline (MDA) and COF-4,4'-oxydianiline (ODA)) offer advantages for multilevel resistive switching, which is a key feature in neuromorphic computing applications. By further introducing a TiO2 layer on the COF-ODA film, a built-in electric field between the COF-TiO2 interfaces could be generated, demonstrating the feasibility of utilizing COFs as a platform for constructing memristors with tunable resistive states. The 1D nanochannels of these COF structures contributed to the efficient modulation of electrical conductance, enabling precise control over synaptic weights in neuromorphic circuits. This study also investigated the potential of these COF-based memristors to achieve energy-efficient and high-density memory devices.

18.
Angew Chem Int Ed Engl ; 63(21): e202402297, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38488772

RESUMEN

The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5 µmol h-1 (per 10 mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.

19.
J Biol Chem ; 298(5): 101847, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314195

RESUMEN

Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.


Asunto(s)
Capsaicina , Colitis , Canales Catiónicos TRPV , Amilorida , Animales , Capsaicina/farmacología , Cloruros/metabolismo , Colitis/tratamiento farmacológico , Colon/metabolismo , Glucosa , Ratones , Ratones Noqueados , Ouabaína , Sodio/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores
20.
Br J Cancer ; 129(4): 620-625, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422527

RESUMEN

BACKGROUND: α-fetoprotein (AFP) response has been demonstrated as a biomarker for unresectable hepatocellular carcinoma (uHCC) patients receiving immunotherapy, but its definition is still unclear. This exploratory study investigated the AFP trajectory and clinical outcomes of receiving atezolizumab plus bevacizumab (Atez/Bev) therapy. METHODS: This secondary analysis used the Atez/Bev arm data of phase III IMbrave150 study to distinguish potential AFP changing rate trajectories through latent class trajectory models. The multivariable Cox models were applied to calculate adjusted hazard ratios (HRs) and 95% CIs for clinical outcomes. RESULTS: Three distinct trajectories were identified among the uHCC patients with 7 times (range, 3 to 28) of AFP measurements: low-stable (50.0%, n = 132), sharp-falling (13.3%, n = 35), and high-rising (36.7%, n = 97). Compared with the high-rising class, HRs of disease progression were 0.52 (95% CI: 0.39, 0.70) and 0.26 (95% CI: 0.16, 0.43) for the low-stable class and sharp-falling class, respectively. In contrast, HRs of death were 0.59 (95% CI: 0.40, 0.81) and 0.30 (95% CI: 0.16, 0.57) for the two groups after propensity score adjustment. Besides, AFP trajectories had the highest relative importance of each covariate to survival. DISCUSSION: There are three distinct AFP trajectories in uHCC patients receiving Atez/Bev, and it is an independent biomarker for clinical outcomes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas , Bevacizumab/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA