Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(7): 1685-1700.e18, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38503280

RESUMEN

The reciprocal coordination between cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver is essential for maintaining cholesterol homeostasis, yet the mechanisms governing the opposing regulation of these processes remain poorly understood. Here, we identify a hormone, Cholesin, which is capable of inhibiting cholesterol synthesis in the liver, leading to a reduction in circulating cholesterol levels. Cholesin is encoded by a gene with a previously unknown function (C7orf50 in humans; 3110082I17Rik in mice). It is secreted from the intestine in response to cholesterol absorption and binds to GPR146, an orphan G-protein-coupled receptor, exerting antagonistic downstream effects by inhibiting PKA signaling and thereby suppressing SREBP2-controlled cholesterol synthesis in the liver. Therefore, our results demonstrate that the Cholesin-GPR146 axis mediates the inhibitory effect of intestinal cholesterol absorption on hepatic cholesterol synthesis. This discovered hormone, Cholesin, holds promise as an effective agent in combating hypercholesterolemia and atherosclerosis.


Asunto(s)
Colesterol , Hormonas , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Colesterol/metabolismo , Hormonas/genética , Hormonas/metabolismo , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Transducción de Señal , Proteínas de Unión al ARN/metabolismo
4.
Trends Biochem Sci ; 46(12): 1003-1016, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34433516

RESUMEN

As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) plays essential roles in development processes and adult tissue homeostasis in multicellular organisms, and its deregulation results in human development disorders and other diseases. Dvl integrates and relays complex Wnt signals by acting as a branch-point of ß-catenin-dependent canonical and ß-catenin-independent noncanonical pathways. It dynamically interacts with multiple proteins to modulate Wnt signaling, while its activity and stability are tightly controlled by other proteins. This Review summarizes the current understanding of regulation of Dvl activity, localization, and stability by post-translational modifications, aggregation, and autophagy, and the impacts on Dvl function in both Wnt signaling and biological processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Humanos , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
5.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521502

RESUMEN

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Proteína 61 Rica en Cisteína , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Factor de Crecimiento Transformador beta , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Minería de Datos , Regulación Neoplásica de la Expresión Génica/genética , Vía de Señalización Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones Desnudos , Regiones Promotoras Genéticas , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética
6.
PLoS Biol ; 19(2): e3001113, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33626035

RESUMEN

Transforming growth factor-ß (TGF-ß) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-ß signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-ß signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-ß-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-ß receptor I (TßRI), FBXO3, and p63 protein expression and that high expression of TßRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-ß signaling in promoting tumor metastasis and that the TßRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Células HEK293 , Células HaCaT , Humanos , Metástasis de la Neoplasia/patología , Isoformas de Proteínas , Proteínas Supresoras de Tumor/metabolismo
7.
Cell ; 139(4): 658-60, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914161

RESUMEN

TGF-beta ligands induce phosphorylation of receptor-activated Smads at both the C-terminal tail and the linker region. Two papers from Massagué and colleagues (Alarcón et al., 2009; Gao et al., 2009) reveal a dual role for this linker phosphorylation, which is required for activation of Smads and for their degradation.


Asunto(s)
Proteínas Smad/metabolismo , Activación Transcripcional , Animales , Ratones , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Smad/química , Proteínas Smad/genética
8.
BMC Biol ; 21(1): 169, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553612

RESUMEN

BACKGROUND: The nutrient-absorbing villi of small intestines are renewed and repaired by intestinal stem cells (ISCs), which reside in a well-organized crypt structure. Genetic studies have shown that Wnt molecules secreted by telocytes, Gli1+ stromal cells, and epithelial cells are required for ISC proliferation and villus homeostasis. Intestinal stromal cells are heterogeneous and single-cell profiling has divided them into telocytes/subepithelial myofibroblasts, myocytes, pericytes, trophocytes, and Pdgfralow stromal cells. Yet, the niche function of these stromal populations remains incompletely understood. RESULTS: We show here that a Twist2 stromal lineage, which constitutes the Pdgfralow stromal cell and trophocyte subpopulations, maintains the crypt structure to provide an inflammation-restricting niche for regenerating ISCs. Ablating Twist2 lineage cells or deletion of one Wntless allele in these cells disturbs the crypt structure and impairs villus homeostasis. Upon radiation, Wntless haplo-deficiency caused decreased production of anti-microbial peptides and increased inflammation, leading to defective ISC proliferation and crypt regeneration, which were partially rescued by eradication of commensal bacteria. In addition, we show that Wnts secreted by Acta2+ subpopulations also play a role in crypt regeneration but not homeostasis. CONCLUSIONS: These findings suggest that ISCs may require different niches for villus homeostasis and regeneration and that the Twist2 lineage cells may help to maintain a microbe-restricted environment to allow ISC-mediated crypt regeneration.


Asunto(s)
Linaje de la Célula , Homeostasis , Intestinos , Nicho de Células Madre , Células Madre , Células Madre/citología , Células Madre/metabolismo , Intestinos/citología , Intestinos/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Animales , Ratones
9.
Bioessays ; 43(10): e2100138, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418117

RESUMEN

The intracellular multiprotein complex ß-catenin destruction complex plays a key role in Wnt/ß-catenin signaling. Wnt stimulation induces the assembly of the receptor-associated signalosome and the inactivation of the destruction complex, leading to ß-catenin accumulation and transcriptional activation of the target genes. The core components of the destruction complex include Axin, APC, GSK3ß, CK1α and other proteins. Recent studies demonstrated that Axin and APC undergo liquid-liquid phase separation (LLPS), which is critical for their function to regulate Wnt/ß-catenin signaling. Here, we discuss the possible roles of LLPS in Wnt/ß-catenin signaling and regulation of Axin LLPS by post-translational modifications.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , Núcleo Celular/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , beta Catenina/genética
12.
Dev Biol ; 465(2): 100-107, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479761

RESUMEN

The proliferation and hypertrophy of chondrocytes play important roles in endochondral ossification, which is tightly regulated during skeleton development. However, the regulation mechanism remains largely unknown. Here we show that DDB1 (Damaged DNA Binding Protein 1) has a critical function in the development of growth plates. Using chondrocyte-specific DDB1 knockout mice, we found that DDB1 deletion in chondrocytes results in dwarfism due to the aberrant skeleton development. The structure of growth plate in tibia becomes disordered at P21, not in femur. But at P70, the changes are severer in femur than tibia. Chondrocyte proliferation and differentiation are attenuated and asynchronous in both tibia and femur at P7 and P21. Furthermore, DDB1 deficiency induces p27 upregulation and subsequent cell cycle arrest in primary chondrocytes. Therefore, our data reveal that DDB1 is essential for the skeleton development by controlling chondrocyte proliferation and differentiation.


Asunto(s)
Puntos de Control del Ciclo Celular , Condrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Fémur/crecimiento & desarrollo , Placa de Crecimiento/metabolismo , Desarrollo Musculoesquelético , Tibia/crecimiento & desarrollo , Animales , Condrocitos/patología , Proteínas de Unión al ADN/genética , Fémur/patología , Placa de Crecimiento/patología , Hipertrofia , Ratones , Ratones Noqueados , Tibia/patología
13.
FASEB J ; 34(11): 15605-15620, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33001511

RESUMEN

Mammalian LGR5 and LGR4, markers of adult stem cells, are involved in many physiological functions by enhancing WNT signaling. However, whether LGR5 and LGR4 are coupled to other intracellular signaling pathways to regulate stem cell function remains unknown. Here, we show that LGR5 and LGR4 can constitutively activate NF-κB signaling in a ligand-independent manner, which is dependent on their C-termini, but independent of receptor endocytosis. Moreover, the C-termini of LGR5/4 interact with TROY, which is required for activating NF-κB signaling. In small intestinal crypt organoids, overexpression of a C-terminal deletion mutant of LGR5 inhibits the growth and bud formation of organoids, whereas overexpression of the R-spondin-binding mutant of LGR5 that is defective for WNT signaling can still promote organoid growth. Our study reveals that NF-κB signaling, regulated by LGR5 and LGR4, plays an important role in the survival of colon cancer cells and the growth of intestinal crypts. Our findings also suggest that LGR5/4-induced NF-κB signaling and WNT signaling may co-regulate the growth of LGR5+ adult stem cells and intestinal crypts.


Asunto(s)
Neoplasias del Colon/patología , Mucosa Intestinal/citología , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Células Cultivadas , Neoplasias del Colon/metabolismo , Humanos , Mucosa Intestinal/metabolismo , FN-kappa B/genética , Receptores Acoplados a Proteínas G/genética , Células Madre/metabolismo , Vía de Señalización Wnt
14.
Mol Cell ; 49(3): 499-510, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23290524

RESUMEN

Transforming growth factor ß (TGF-ß) is a potent antiproliferative factor in multiple types of cells. Deregulation of TGF-ß signaling is associated with the development of many cancers, including leukemia, though the molecular mechanisms are largely unclear. Here, we show that Casitas B-lineage lymphoma (c-Cbl), a known proto-oncogene encoding an ubiquitin E3 ligase, promotes TGF-ß signaling by neddylating and stabilizing the type II receptor (TßRII). Knockout of c-Cbl decreases the TßRII protein level and desensitizes hematopoietic stem or progenitor cells to TGF-ß stimulation, while c-Cbl overexpression stabilizes TßRII and sensitizes leukemia cells to TGF-ß. c-Cbl conjugates neural precursor cell-expressed, developmentally downregulated 8 (NEDD8), a ubiquitin-like protein, to TßRII at Lys556 and Lys567. Neddylation of TßRII promotes its endocytosis to EEA1-positive early endosomes while preventing its endocytosis to caveolin-positive compartments, therefore inhibiting TßRII ubiquitination and degradation. We have also identified a neddylation-activity-defective c-Cbl mutation from leukemia patients, implying a link between aberrant TßRII neddylation and leukemia development.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Leucemia/metabolismo , Leucemia/patología , Ratones , Datos de Secuencia Molecular , Mutación/genética , Proteína NEDD8 , Células 3T3 NIH , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl/química , Proteínas Proto-Oncogénicas c-cbl/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Ubiquitinación/efectos de los fármacos
15.
PLoS Genet ; 14(9): e1007697, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30260955

RESUMEN

Lgr5+ intestinal stem cells are crucial for fast homeostatic renewal of intestinal epithelium and Wnt/ß-catenin signaling plays an essential role in this process by sustaining stem cell self-renewal. The poly(ADP-ribose) polymerases tankyrases (TNKSs) mediate protein poly-ADP-ribosylation and are involved in multiple cellular processes such as Wnt signaling regulation, mitotic progression and telomere maintenance. However, little is known about the physiological function of TNKSs in epithelium homeostasis regulation. Here, using Villin-creERT2;Tnks1-/-;Tnks2fl/fl (DKO) mice, we observed that loss of TNKSs causes a rapid decrease of Lgr5+ intestinal stem cells and magnified apoptosis in small intestinal crypts, leading to intestine degeneration and increased mouse mortality. Consistently, deletion of Tnks or blockage of TNKS activity with the inhibitor XAV939 significantly inhibits the growth of intestinal organoids. We further showed that the Wnt signaling agonist CHIR99021 sustains the growth of DKO organoids, and XAV939 does not cause growth retardation of Apc-/- organoids. Consistent with the promoting function of TNKSs in Wnt signaling, Wnt/ß-catenin signaling is significantly decreased with stabilized Axin in DKO crypts. Together, our findings unravel the essential role of TNKSs-mediated protein parsylation in small intestinal homeostasis by modulating Wnt/ß-catenin signaling.


Asunto(s)
Células Madre Adultas/fisiología , Proliferación Celular/fisiología , Mucosa Intestinal/fisiología , Tanquirasas/metabolismo , Animales , Técnicas de Cultivo de Célula , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Organoides , Poli ADP Ribosilación/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Tanquirasas/antagonistas & inhibidores , Tanquirasas/genética , Vía de Señalización Wnt/fisiología
16.
Proc Natl Acad Sci U S A ; 114(38): 10113-10118, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874583

RESUMEN

Smad7 is a negative feedback product of TGF-ß superfamily signaling and fine tunes a plethora of pleiotropic responses induced by TGF-ß ligands. However, its noncanonical functions independent of TGF-ß signaling remain to be elucidated. Here, we show that Smad7 activates signal transducers and activators of transcription 3 (STAT3) signaling in maintaining mouse embryonic stem cell pluripotency in a manner independent of the TGF-ß receptors, yet dependent on the leukemia inhibitory factor (LIF) coreceptor glycoprotein 130 (gp130). Smad7 directly binds to the intracellular domain of gp130 and disrupts the SHP2-gp130 or SOCS3-gp130 complex, thereby amplifying STAT3 activation. Consequently, Smad7 facilitates LIF-mediated self-renewal of mouse ESCs and is also critical for induced pluripotent stem cell reprogramming. This finding illustrates an uncovered role of the Smad7-STAT3 interplay in maintaining cell pluripotency and also implicates a mechanism involving Smad7 underlying cytokine-dependent regulation of cancer and inflammation.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Factor de Transcripción STAT3/genética , Proteína smad7/genética , Factor de Crecimiento Transformador beta/genética
17.
J Biol Chem ; 293(48): 18444-18453, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30282636

RESUMEN

Activin and Wnt signaling are necessary and sufficient for mesendoderm (ME) differentiation of human embryonic stem cells (ESCs). In this study, we report that during ME differentiation induced by Activin and Wnt, Activin/Smad2 induces a decrease of the repressive histone modification of H3K27me3 by promoting the proteasome-dependent degradation of enhancer of zeste 2 polycomb (EZH2)-repressive complex 2 subunit. As a result, recruitment of the forkhead protein FOXH1 on open chromatin regions integrates the signals of Activin/Smad2 and Wnt/ß-catenin to activate the expression of the ME genes including HAS2 and ALDH3A2 Consistently, H3K27me3 decrease is enriched on open chromatin around regulatory regions. Furthermore, knockdown of HAS2 or ALDH3A2 greatly attenuates ME differentiation. These findings unveil a pathway from extracellular signals to epigenetic modification-mediated gene activation during ME commitment.


Asunto(s)
Activinas/fisiología , Aldehído Oxidorreductasas/fisiología , Diferenciación Celular/fisiología , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Hialuronano Sintasas/fisiología , Mesodermo/citología , Proteína Smad2/fisiología , Regulación hacia Arriba , Vía de Señalización Wnt , beta Catenina/fisiología , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Factores de Transcripción Forkhead/metabolismo , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Proteolisis
18.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2369-2377, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28847510

RESUMEN

Activin A receptor type I or activin receptor-like kinase 2 (ACVRI/ALK2) belongs to type I TGF-ß family and plays an important role in bone development. Activating mutations of ALK2 containing the R206 to H mutation, are present in 95% in the rare autosomal genetic disease fibrodysplasia ossificans progressiva (FOP), which leads to the development of ectopic bone formation in muscle. The effect of AMP-activated protein kinase (AMPK) activation on ALK2R206H-mediated signaling in fibroblasts obtained from a FOP patient was assessed in the present study. The activity of the mutated ALK2 was suppressed by pharmacological AMPK activators such as metformin and aspirin, while their actions were blocked by the dominant negative mutant of AMPK and mimicked by the constitutively active mutant of AMPK. Furthermore, activation of AMPK upregulated Smad6 and Smurf1 and thereby enhanced their interactions, resulting in its proteosome-dependent degradation of ALK2. In contrast, knockdown of Smad6 or Smurf1 prevented metformin-induced reduction of ALK2. To evaluate the biological relevance of AMPK action on ALK2 activity, we induced FOP fibroblasts into iPS cells and found that their osteogenic differentiation in vitro was inhibited by metformin. Our studies provide novel insight into potential approaches to treatment of FOP, since several AMPK activators (e.g. metformin, berberine, and aspirin) are already in clinical use for the treatment of diabetes and metabolic syndromes.


Asunto(s)
Receptores de Activinas Tipo I/genética , Miositis Osificante/genética , Proteínas Quinasas/genética , Proteína smad6/genética , Ubiquitina-Proteína Ligasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Diferenciación Celular/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Metformina/administración & dosificación , Mutación , Miositis Osificante/patología , Osteogénesis/genética , Transducción de Señal/efectos de los fármacos
19.
J Biol Chem ; 292(4): 1339-1350, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27965357

RESUMEN

Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling. Furthermore, we demonstrate that activin mediates the H3K27me3 decrease via the Smad2-mediated reduction of EZH2 protein level. Our results suggest a two-step process of ME initiation: first, epigenetic priming via removal of H3K27me3 marks and, second, transcription activation. Our findings demonstrate a critical role of H3K27me3 priming and a direct interaction between extrinsic signals and epigenetic modifications during ME initiation.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Mesodermo/metabolismo , Línea Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/genética , Células Madre Embrionarias Humanas/citología , Humanos , Mesodermo/citología , Metilación , Proteína Smad2/genética , Proteína Smad2/metabolismo
20.
Acta Biochim Biophys Sin (Shanghai) ; 50(1): 37-50, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228156

RESUMEN

Transforming growth factor beta (TGF-ß) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-ß ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-ß/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-ß signaling, and then discuss how each step of TGF-ß signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.


Asunto(s)
Retroalimentación Fisiológica , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Ligandos , Modelos Biológicos , Unión Proteica , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA